Abstract
An approximate representation of discrete functions {f$_{i,j}\mid$|i, j=-1, 0, 1, …, N+1}in two variables by a fuzzy system is described. We use the cubic B-splines as fuzzy sets for the input fuzzification and spike functions as the output fuzzy sets. The ordinal number of f$_{i,j}$ in the sorted list is taken to be the out put fuzzy set number in the (i, j) th entry of the fuzzy rule table. We show that the fuzzy system is an exact representation of the cubic spline function s(x, y)=$\sum_{N+1}^{{i,j}=-1}f_{i,j}B_i(x)B_j(y)$ and that the approximation error S(x, y)-f(x, y) is surprisingly O($h^2$) when f(x, y) is three times continuously differentiable. We prove that when f(x, y) is a gray scale image, then the fuzzy system is a smoothed representation of the image and the original image can be recovered exactly from its fuzzy system representation when it is a digitized image.e.