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Development of Mixed H)/H- Controller Design
Algorithms for Singular Systems with Time Delay

Jong Hae Kim

Abstract: In this paper, we consider the H»(or guaranteed cost control) and H... controller design methods for singular(or descriptor)
systems with input time delay. Also, a mixed /:/H. controller design algorithm is treated by combination of the proposed
H; and H.. controller design method. The sufficient conditions for the existence of controllers and controller design methods
are introduced at each Lerama and Theorem. Furthermore, we present optimization problems to get the upper bound of performance

measures. The proposed methods are checked by examples.
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I. Introduction

The special characteristics for singular(or descriptor)
systems have drawn considerable attention due to extensive
applications of singular systems in large scale systems,
singular perturbation theory, and in particular, constraint
mechanical systems. The singular form is a natural
representation of linear dynamical systems, and makes it
possible to analyze a larger class of systems than state space
equations do[l], because state space equations cannot
represent algebraic restrictions between state variables and
some physical phenomena, like impulse and hysterisis which
are important in circuit theory, cannot be treated properly.
Many essential notions and results in control theory based
on the state space form have been generalized for the
descriptor form, such as LQ problem[2][3], controllability
and observability [4], Lyapunov equations[3][5]-[7], and
robust control [8][9], etc.

Two performance measures in optimal control theory
which have been the focus of much recent research are H>
and H.. norms. Recently, the descriptor H. control problem
has been considered by many researchers. Especially,
Masubuchi et al.[1] considered the H- control problem for
descriptor systems that possibly have impulsive modes
and/or jw axis zeros in order to eliminate the assumptions.
Also, Takaba et al/[10] treated robust H> performance of
uncertain descriptor systems. In order to get the robust
performance, the control problem dealing with both /1> and
H: norm measures has been formulated11]-{14]. However,
most mixed H»/H~ papers did not consider the problem of
singular systems, which is the first motivation of this paper.
Therefore, we want to present the mixed H/H.. controller
design algorithm for singular systems. In this paper, we
consider just optimal H» performance measure instead of
general H» method in H, control part. This part of H
control is somewhat similar to the guaranteed cost control
problem or LQ(linear Quadratic) control problem.

Since the stability analysis and control of dynamic
systems with time delay are problems of recurring interest
as time delay ofien are the causes for instabifity and poor
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performance of control systems, the study of time delay
systems has received considerable attention over the past
years[15][16]. However, there are no papers considering H-,
Hw, and mixed H:/H. controller design methods for
singular systems with time delay, which is the second
motivation of this paper. The second aim is to present not
only the sufficient conditions for the existence of controllers
but also the controller design algorithms for singular
systems with time delay in H., H., and mixed H»/H~
control.

In this paper, we propose /> control method, H-~. control
technique, and mixed HxH- control law for singular
systems with input time delay by using Riccati inequality
and linear matrix inequality approaches. At each section, the
sufficient conditions of controller existence, the controller
design algorithm, and the optimization problem to get the
upper bound of performance measures are treated. Since the
proposed conditions are linear matrix inequality form in
terms of all finding wvariables, all solutions including
controller gain and upper bound of performance measures
can be calculated simultaneously. Also, the obtained
controllers guarantee not only asymptotic stability of the
closed loop system but also minimization of the upper
bound of performance measures.

The following notations will be used in this paper.
()7 )7 deg(-), det(-), (). and yank( )
denote the transpose, inverse, degree, determinant, trace, and
rank of a matrix. A positive definite matrix (negative
definite matrix) X is denoted as X>(0 (X<0). An identity
matrix with proper dimensions is denoted as 7. 7, denotes
an identity matrix with > dimension. x,(z) means »x]

vector.

11. Problem formulation
Let us a linear time invariant singular(or descriptor)
system with input time delay

2y(1) = Cux(t)

x(t) = @(¢t), —d<i<

where x(#)&R” is the descriptor variable, z,(¢)=RY

(i=1,2) is the controlled output variable, «(#)eR” is the
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control input variable, w(f)eR” is the disturbance input
variable, #(¢) is an initial value function, and all matrices
have proper dimensions. Here, time delay( ) is non-
negative real number. We assume that E is singular matrix
with  yank(E)= r<n and the matrix (E, A) is regular.
The property of regularity guarantees the existence and
uniqueness of solution for any specified initial condition. In
the following, we summarize some definitions and useful
properties. If deisE— A) is not identically zero, a pencil
sE— Afor a pair (E,A)) is regular. The singular system
has no impuisive mode(or impulse free) if and only if

rank( E) = deg det( sE— A). (2)

The assumption of impulse free ensures that singular system
has no infinite poles. Associated with the system (1), we
propose the following control law

u(t) = Kx(t) =—— B PEx(#). 3

1
0

When we apply the control (3) to the system (1), the
resulting closed loop system is given by

Ex(t) = Apx(t)+BKx(i—d)+ Bow(t)
Z](t) = Clx(f) 4
z(t) = Cux(t)

where, Ay=A+B K=A~ % B\BIPE. Also, we introduce
> performance(or guaranteed cost function) measure and H-,
performance measure as follows:

Ji= fo‘ 2/(t)72(¢)dt - H, performance measure, (5)

= [ e (D) a6 = ) T D) el ©

. H,, performance measure.

el

Without loss of generality, we assume that the system
matrices in (1) and some matrices have the following
singular value decomposition form[1,2]:

1, 0 [P P A0
E= r — t 2 A: 1 s
[0 0]' d [p{ pg]’ [O ALJ

Ba By [ B

Bd:[de]‘ Bl:[Bl‘z]’ B [Bz]
Ci=[Cy Cul, C=[Cy Cul, Q,:[%’F" 8],(i:1,2).
(7

where all decomposed matrices have appropriate dimensions
and @, is a positive definite matrix.

1I1. Main results
In this paper, we explain the H, control method in
Lemma 1 and Theorem 1, H- control technique in Lemma
2 and Theorem 2, and mixed H-/H.. control problem in
Theorem 3 for delayed singular systems, respectively.
1. Hz control{or Guaranteed cost control)
In this section. we introduce the sufficient condition. H-

controiler design method, and the upper bound of H,
performance measure. The objective is to minimize the H->
performance measure satisfying the asymptotic stability of
the closed loop system.

Definition 1: Consider the input delayed singular system
(1) with zero disturbance input and the structure (7), if there
exist a control law w(¢)™ = Kx(¢) =~ (1/0) B{ PEx(¢) and
a positive scalar J* such that the closed loop system is
asymptotically stable and the closed loop value of H-
performance measure satisfies J,<J*, then J* is said to be
an upper bound of guaranteed cost function and w«(#)™ is
said to be an H> control law for the system (1).

Lemma 1: Consider the system (1) with the structure (7)
and assume that the disturbance input is zero and C;;=0.
If there exist a symmetric matrix P, S>(, and a controller
gain K satisfying

ETPE>(
(8)
ARPE+E"PA+K'SK+CC, E'PB,]
BiPE -S

and if there exists a positive scalar satisfying J,<J', then
the control law w(#)™ = Kx(t) is an H> control.

Proof: Firstly, we define a Lyapunov functional candidate
as

V() = 5(0) TE'PERD + [ (0 TKTSKx( Dz, (9)

Here, P is a symmetric matrix satisfying E'PE>0, S is
a positive definite matrix. Taking the derivative of (9) along
the solution of the closed loop system (4) yields

V(Ex(1)) = x(t) "ETPEX(t) + x(£) "ETPEx(t)

+x() TKSKx(1) — x(1— d) K TSKi— ), O
The matrix inequality (8) implies
V(Ex(£)< — 2,(t) T2,(£)<0. (1
Therefore, we have
H( OV [AEPE+ E'PA+ KTSK+CICc, ETPB,
[ Kxg BIPE ~s | (2
X }Cg()/] <{

which ensures the asymptotic stability of the closed loop
system (4). Here, x,= x(t—d ). Furthermore, by integrating
both sides of the inequality (11) from 0 to 7, and using

initial condition, we obtain

T, .
- f“ 2(8) 2 (1)dt> :(T) TETPEX( T — 2(0) TETPEX(0)
T i "
+ Jr «(7) TKTSKx(r)dr— fj(lx( o) TKTSKx( t)dr.
(13)

As the closed loop system (4) is asymptotically stable, when

T;—co0,
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W THTETPEX( T/ —0, (14)
Ty
[, D KSKe D)dr—0.

Hence, we get

fowzl(t)Tzl(t)dts #0)TETPEH0) 1s)
+ [ 8 KTSK§ e = I

This (15) is an upper bound of H; performance measure. Il
In the following Theorem 1, we present the optimization
problem to get the upper bound of H, performance measure
and the H, controller design method.
Theorem 1: If the following optimization problem

minimize { @+ t?’(NTGN)} subject to (16)
XA +A X— 2EB“B]1+BZ11YB(A XCH EBH
i) CHX -7 0 <0,
EB“ 0 -Y
a ¢,0)
ii) [¢( "y ](0,
iii) [ G EB”](O
eB 11
iv) X0I

has a positive definite solution, X, ¥, G, a, &, then (3)
is an optimal H. controller(or optimal guaranteed cost
controller) and J* == g+ t#{ NTGN) is an optimal guaranteed
cost of H» performance measure. Here, some notations are
defined as

X=P', Y=5" e=-t

[ 80
#0=[ 5] “

0
f"dtﬁy(r)tb,‘(r)Tdr: NNT.
Proof: By Schur complements, (8) is transformed into
AKPE+EfPAK+KTSK+c 7C,+ETPB,ST'BIPE<(. (18)

In order to solve the above Riccati inequality, (18) is
changed to

A}PE+ETPAc+K"SK+ CC, (19)
+E"PB,ST'BJPE+ @=0

If we apply (7) to (19), (19) can be expressed as follows:
AFP 4+ Pl A~ (2/0)(P\ By + P, B)(P\By + P,Bp) "

+ (10 WP By + PaBp)S(P\ By + P,Bp) "+ CHCy (20)
+ (P By+ PsBp)S {PBa+P,Bp) + Q=0

PAT+ClLClL=0 @1
AP+ CLCL =0 (22)
ChCi=0 23)
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Therefore, Cj;;=0 from (23). And then, P,=0 from (21)
and (22) by letting Cy;,=0 in the input delayed singular
systems (1). (20) is expressed as

ATP/+ P A, —(2/0) PB,Bl\P, + (1/0")P\BSB{\P| (24)
+ClCy,+ PBaS ™ 'BLP =~ @ <0.

Since the positive definite matrix @, can be selected, (24)
can be transformed into 1) of (16) using the Schur
complements and changes of variables, X=P;', y=8"",

e=1/p. In the first term of (15), ¢(0) TETPEH )<« is
equivalent to ii) of (16). The second term of right hand side
in (15) has the following relations.

[ 80V K SKp( )

0 .
~ /" [ (6.(0) "PiBSBLP (1)
Z(I/Pz)ﬂ(NNrpanSBlrlpl) (25)
=(1/oANTP, B SBLPN)
<CANTPLGPIN).

Therefore, — G+ (1/p%)BuSB<0 is equivalent to iii) of
(16) by Schur complements. It follows from (15) that

i <a+ t{ N'P,GP,N)<a+ tri N'GN): =]~ (26)
because of the condition (iv) in (16). In other words,

PGPKLG
©XGX>G (by Pi'=X) 27
S(X—-DGX+D>0 (by XD,

|

Remark 1: 1t is well known that the given H:
performance measure (5) can be changed to the LQ
performance measure by simple modifications as follows:

D 0xD + D Rt )k o8)

Therefore, the considering problem includes the guaranteed
cost control and LQ control methods.
2. H.. control

In this section, we present the sufficient condition, Hwo
controller design method, and the upper bound of H. norm
bound of the closed loop system. The objective is to
minimize the H.. norm bound and guarantee the asymptotic
stability of the closed loop system.

Definition 2: Consider the input delayed singular system
(1) with the structure (7), if there exist a confrol law

w()* = Kol $) =—(1/p) BIPEx(#) and a positive scalar

y* such that the closed loop system is asymptotically
stable and the closed loop value of H« performance

measure satisfies y< v*, then 3 is said to be an upper

bound of He norm and «(#)™ is said to be an Hw control
law for system (1).

Lemma 2: Consider the system (1) with the structure (7)
and assume that C,=0. If there exist a symmetric matrix

P, S50, >0, and controller gain K satisfying
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ETPE>(
APE+ETPA+KTSK+ CcTC, E'PB, EPB,
BIPE -S 0 <0
BIPE 0 —rI
29

and if there exists a positive scalar satisfying y<y™, then

the control law wu(#)* = Kx(#) is an He control law.
Proof: Similarly to the proof of Lemma 1, we take same

Lyapunov functional (8). The matrix inequality (29) implies

VIEX()< — 2o(8) T2o(£) + Y 8) Tul( ) <0. (30

Therefore, we have

FOIE
de X
w(?)
(31
AIPE+ETPA.+K'SK+ Ccfc, ETPB, E'PB,
BIPE -8 0
BIPE 0 4 |
x(t)
X del SO.
wlt)

In the following Theorem 2, we consider the optimization

problem to get the upper bound of H. norm of the closed

loop system and the H. controller design method.
Theorem 2: If the following optimization problem

minimize /S subject to (32)
XAT+ A, X~2eB Bl +BaYBY XCh eBy, By
CZIX - I 0 0 < O
eBh 0 —-Y 0 '
B} 0 0 —8I

has a positive definite solution X, Y, &, @, then (3) is an
He controller and »™ = \/Z’ is an upper bound of A norm
bound. Here, some notations are defined as

X=P7', Y=S8"", e=1/o, B=7. (33)

Proof: Similarly to the proof of Theorem 1, (29) is
changed to

ALPE+ETPA+ KTSK+ ClC, (

+E"PB,S™'B{PE+(1/7)E"PB,B; )
d 7 )E' PB;B: PE<0.

In order to solve the above Riccati inequality, (34) is
changed to

ARPE+ETPAg+K'SK+ C{C, (3%)
+E"PB,S 'BIPE+(1/¥)ETPB,BIPE+ Q,=0.

If we apply (7) to (35), (35) can be expressed as follows:

ATP +PA,—(2/0) (P By, + P,Bp)(P B+ Py Byp) "
+(1/0*)( P By + PyBip)S(P By + PyBpy) T " CiCy 36)
+ (P By +PyBp)S P By+PyBp) T

+(1/72)(P, Boy + Py Byy)(P, By + Py Byy) T+ @, =0

PAT+ClCr=0 (37
APT+CLCy=0 (38)
CHCr=0 (39)

Therefore, C,=0 from (39), and P,=0 from (37) and
(38) by letting Cy,=0 in the input delayed singular
systems (1). (36) is expressed as

AlP + P A,~(2/0) P,ByB}\P, + (1/0*)P\B;,SB} P,
+ CECy + PLBuS™ 'BLP + (1/¥)PByBLP =~ Q, 0.

(40)

Since the positive definite matrix ), can be chosen, (40)
can be transformed into (32) using the Schur complements
and changes of variables, X=P;', Y=S71 e=1/p,
B=7. n
3. Mixed Ho/H. control

In this section, we propose the mixed H/H~ controller
design method by combination of 3.1 and 3.2. The aim is
to minimize the H, performance measure under satisfying
the prescribed He norm bound of the closed loop system.

Definition 3: Consider the input delayed singular system
(1) with structure (7), if there exist a control law
w(t)* = Kx(t) =—(1/0) BIPEx(¢) and a positive scalar
J* satisfying the He norm bound within a prescribed 7,
then J* is said to be an upper bound of H, performance
measure and ()™ is said to be a mixed H»/H.. control
law for system (1).

Theorem 3: For a given positive scalar y, if the
following optimization problem

minimize { o+ #{NTGN)} subject to 4n
XAT+ A\ X—2eB,Bl + B, YBL XC[ B,
(i) CuX -1 0 |<0,
eBlfl ) 0 —-Y
XAT+ A X—2eBy B+ B, YBL XCL B, By
eBl 0 -Y 0
Ba 0 0 —A]
—a ¢0)7
GiD) | _X]<o,
Gv) [ G eBul¢o,
EBU —Y]
v) X1

has a positive definite solution, X, Y, G, a, &, then (3)

is a mixed Ho/H~ controller and J* = o+ t{NTGN) is an
optimal guaranteed cost of H, performance measure.

Proof: The proof follows in a straightforward way from
the proofs of Lemma 1, Lemma 2, Theorem 1, and Theorem
2. [

Remark 2: The optimization problem in Theorem 1,
Theorem 2, and Theorem 3 can be easily solvable using the
command of ‘mincx’ in LMI Toolbox[17].

Remark 3: The proposed results can be extended the
time-varying delay systems by simple modifications[15].
Also, the results can be applicable singular systems without
time delay directly.



Transactions on Control, Automation and Systems Engineering Vol.

IV. Example
In order to check the validities of the proposed methods,
we consider an input delayed singular system

100) -310 1
010/x(2) =11 10/x(H+|2]ault)
000 0 01 1
0.1 1
+10.3|u(t—d)+ | 1{ w(t)
0.2 0
z(t) = [1 2 0]x(®) 42)
2o(t) = [3 1 0]x(®)
d=2 ¢t = [e 00] .

All solutions can be calculated at the same time from the
LMI Toolbox because the proposed optimization problems
are LMI forms regarding finding all variables.

(H; control)

The solutions satisfying Theorem 1 are as follows:

_ [ 2.8406 —0.0003 _
X [~o.0003 0.0011]' Y = 0.0018,

— [ 0.0014 —0.0006 _
“ [~0.0006 0.0015 ] a = 2.6016, (43)
e = 3.4713%10"*

Therefore, the H> control law and the upper bound of H,
performance measure are

w(H)* = [—0.0002 —0.6185 0]x(2), (44)
=

[_
2.6067.

The obtained H. controller(or guaranteed cost controller)
guarantees asymptotic stability of the closed loop system in
spite of time delay. The trajectories of states and controlled
output signal are shown in Fig. 1.

states and controlled output

Time(sec)

Fig. 1. The trajectories of states and controlled output with
H, controller.
(Hw control)
The solutions satisfying Theorem 2 are as follows:

s 2.9548 —1ATTS] v _ N
X = 10°x[ A0 e ] Y = 12300 g

e = 5.6853x10% 8 = 5.6601x10 "

Therefore, the Hw control law and the upper bound of
performance measure are

w(t)™
7*

10°x { —2.0937 —4.1872 01x(4), (46)
2.3791x10 ™

i
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In the case of applications, the designer can select a value
of y according to the desired performance. If we set y=1,
all solutions and H. control law are obtained as follows:

_ T 0.2043  —0.2275 _

X [—0.2275 0.8799]' ¥ = 1.908.

e = 0.5679, 47
w($)* = [—5.9214 —2.8216 0]«(t).

If we define the disturbance input like (a) of Fig. 2 for
computer simulation, then the states and controlled output
are shown in Fig. 2. Therefore, the obtained /- controller
guarantees not only asymptotic stability of the closed loop
system but also He norm within a prescribed bound against
input time delay and disturbance input.

12

10 e
8
3 g
B
e
€ 6
8
£,
§ z2(t)
)
2
2
hel
0 | ——
-2
0 2 4 6 8 10

Time(sec)

(a) w(t) and 2z,(¢)

25
2
1.5 x1(1)
1
4
£ os
7
0
05 @
-1
-1.5
-2
4] 2 4 6 8 10

Time(sec)

(b) x,(#) and x.(¢)
Fig. 2. The trajectories of disturbance input, controlled
output, and states with He controller.

(Mixed H/H- control)
For a given y=1, the solutions satisfying Theorem 3 are
as follows:

— [ 0.82714 —0.2913 -

X —0.2913 0.6963 ] v 1.73%.

— [0.2138 0.2963
0.2963 0.6980]°

(48)
a = 10.4748, ¢ = 0.5343.

Therefore, the mixed Hx/H. control law and the upper
bound of H, performance measure are

[_13909 —2.1165 O]X(t), (49)

u(t)*
* 11.2501.

J

Similarly to the previous two examples, the obtained mixed
H>/H~ controller guarantees the desired two performances
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and asymptotic stability of the closed loop system. The
trajectories of states and controlled outputs are displayed in
Fig. 3 for the same disturbance input, i.e., (a) of Fig. 2.
Therefore, if we can minimize H, performance measure(or
guaranteed cost function) and H» norm of the closed loop
system from w(¢) to z,(¢), then the /> norm in the closed
loop system from w(t) to z;(#) can be reduced at second
hand. However, this is not a pure mixed H»H. control
method. A future research would be to develop the pure
mixed Ho/H controller design method which minimizes the
H, norm of a closed loop system from w(t) to z,(¢)
satistying a prescribed H. norm bound on another closed
loop system from w(#) to z,(¢).

states

-0.5 x2()

Time({sec)

(@) x,(¢) and xy(t)

controlled outputs
n > a @

o

-2
[¢] 2 4 6 8 10
Time(sec)

(b) z(¢) and z,(¢)

Fig. 3. The trajectories of states and controlled outputs with
mixed H/H~ controller.

V. Conclusion

This paper considered the design problems of H, Hw,
and mixed H»/H. controller for singular systems with time
delay by Riccati inequality and linear matrix inequality
approach. The presented controllers guaranteed the
asymptotic stability and the minimization of upper bound in
performance measures. The sufficient conditions expressed
by linear matrix inequality form, the controller design
methods, and the optimization problems to get the upper
bound of performance measures were proposed. Finally, the
validities of the controller design methods were checked by
numerical examples.
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