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This paper investigates the development of a neural network based system for automated signature
authentication that relies on an autoregressive characterization for the segments of a signature. The primary
contributions of this work are tow-fold: a) the development of the neural network architecture and the
modalities of training it, b) adaptation of the dynamic time warping algorithm to formulate a new method for
enabling cosistent segmentation of multiple signatures from the same writer. The performance of the signature
verification system has been tested using a sizable database that includes a comprehensive set of simulated and
realistic forgeries. False Acceptance and False Rejection error rates of 0.78% and 1.6% respectively were

obtained in tests conducted using 1920 skilled forgeries.
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1. Introduction

There has been widespread interest in the
field of biometric personal identification in recent
years[1]. In particular, signature verification is of
special interest. A signature verification system
can be used in applications such as controlling
access to a room, authorizing a financial tran-
saction, etc. In the latter category large amounts
of money are sanctioned everyday through credit
card and check-based transactions on the basis of
a signature. According to the National Fraud
Information Center, credit card fraud in the
United States alone amounts to more than $ 1

billion per year. Even today, when formal sig-
nature verification is carried out, it is generally
done manually; a test signature is made on the
basis of this comparison. While experts do well
in verifying signatures, it would be extremely
useful to automate this process. It is fair to
assume that an automated signature verification
system would be of considerable value in
reducing incidences of fraud.

Many researchers have worked on both
dynamic and static signature vefication problems.
On reviewing the literature it was realized that a
direct comparison of results from different re-
searchers is often not possible. This is due to
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factors such as different data used, field con-
ditions, training and test data size, and the way
in which the issue of forgery was handled[2].
Three major survey papers {2}, [3], and [4] have
been published in this area covering both the
static and dynamic signature verification arcas.

The principle creative contribution of this
paper is a new technique for camying out on-line
signature verification. The techinque is based on
an autoregressive{AR) characterization of a sig-
nature developed earlier[5]. However, it builds on
this by: a) developing a neural network archi-
tecture for carrying out signature authentication,
and b} employing the dynamic time warping
(DTW) algorithm to develop a method for en-
suring consistent segmentation of signatures. The
segmentation enables the nonstationary evolution
of the signature to be captured.

Section 2 describe the realistic forgery
database and Section 3 discusses the details about
preprocessing and modeling of signature data. In
Section 4, the design of the signature verification
system based on neural network architecture is
presented. Section 5 shows the experiments and
results.

2. The Database

The signatures were recorded dynamically
using a Wacom digitizing tablet that provided a
uniformly time-spaced (x,y) coordinate sequence
of points along the signature at a sampling rate
of 205 samples/second. The tablet had a maxi-
mum spatial resolution of 1200 points/inch. The
genuine writer population consisted of 16 writers
each of whom provided a total of 150 signatures
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(for a total of 2400 signatures) collected in a
distributed manner over a period of time. The
random forgeries were also drawn from the above
data set. The signatures of a particular writer,
while characterizing that writer, also doubled as
random forgeries of the other 15 writers in the
population. Some samples of the genuine sig-
natures are shown in <Figure 1>
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<Figure 1> Genuine signature samples

Additionally, a data set of casual and
skilled forgeries was collected for this study.
Casual forgeries are those signatures that result
when the forger knows the spelling of the
genuine signature but has not seen the exact
form. Each one of 16 writers was asked to "sign"
the fictitious name of John Q. Public 100 times,
thus providing a total of 1600 signatures. Once
again both genuine signatures and casual for-
geries were drawn from this data set in a non-
overlapping fashion. We should point out that the
use of a single fictitious name, rather than the
actual names of the 16 writers, actually makes
this study a worst case variant of the corres-
ponding real-life casual forgery situation; this
point is elaborated on in Section 6.

Unlike the casual forgery, the skilled for-
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gery is executed after some practice in forging
the genuine signatures of writers in the po-
pulation. Understandably then, collection of such
a database is a much more arduous task, even
with a cooperative group of gorger subjects. On
the basis of trials 8 additional writers were
recruited exclusively as forgers; these subjects
were very skillful and highly motivated in pro-
viding forgeries. Then 8 genuine writers from the
original population of 16 were selected as the
forgery targets. This last choice was made on the
basis of the perceived case with which their
signatures were copied; typically it amounted to
picking writers whose signatures were clearly
contoured. Each forger was provided with a hard
copy of 10 genuine signatures of a writer to be
forged, and given the opportunity to practice as
long as he/she wished. The forgers were also
allowed to look at the genuine signatures while
they were executing the forgeries. The forgers
were also informed in advance that the dynamic
characteristics of the signature would be used in
our verification system. Specifically, they were
told that if they slowed down inordinately in
executing a forgery - due to the meticulousness
of their efforts at doing a good job - it would be
almost impossible for their signatures to pass
scrutiny. This instruction produced the effect of
reflecting the following real-life situation. A for-
ger being watched while executing a signature
slows down to the extent needed to produce what
he/she considers to be a reasonable spatial re-
production of the original signature, while not
arousing any suspicion on the part of the obser-
ver. Each of the 8 forgers provided 30 samples
of each of the 8 genuine writers, resulting in a
total of 1920 skilled forgeries. Some samples of

skilled forgeries are provided in <Figure 2>
along with the forged signature. The sequence of
steps involved in the preprocessing and modeling
of the signature are discussed in the next section.
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<Figure 2> Skilled forgery samples

3. Signature Preprocessing and
Modeling

The sampled (x,y) coordinate sequence
comresponding to each signature was subjected to
the following preprocessing steps.  First, the
signature contour was redefined using just 256
points that were re-positioned along it at equal-
arc-length intervals, so that were re-positioned
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along it at equal-arc-length intervals, so that we
had uniform spatial sampling for each signature.
Second, a straight line was numerically fitted to
the signature. Finally, each signature was con-
verted to a 1-D sequence by computing the per-
pendicular distance to the fitted line, as shown in
<Figure 3>.

In order to capture the non-stationarity of
the signatures, a segmentation scheme was im-
plemented; each segment was modeled separately
by a stationary model as discussed below. The
spatial evolution of the signature was thus
represented by the sequence of feature vectors
comresponding to all the segments. The seg-
mentation was carried out as follows. A master
signature for each one of the writers was divided
into 8 uniform segments and, through the use of

(a) Original signature
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(b) Extracted sighature
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(c) after Equal-arc-length interpolation

the dynamic time warping algorithm[6), segment
boundaries were located for all other signatures
that best comresponded to the segment boundaries
of the master signature. A by-product of the
warping process is the generation of a distortion
measure whose value is lower the more similar
the two sequences are. This distortion measure
was included as an additional feature charac-
terizing the signature. Each segment delineated
through the application of the DTW algorithm
was modeled by a 2'nd order Autoregressive
{AR) Model. A much more detailed discussion of
the above processes, including parametric choices,
can be found in [6). The neural network archi-
tecture formulated to carry out the verification
task is discussed in Section 4.

(d) Best-fit straight line and perpendicular distance

(e) 1-D sequence of perpendicular distances

<Figure 3> Instances of preprocessing steps
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4. Neural Network Architecture

A separate multilayer perceptron, as shown
in <Figure 4>, was used for each one of the 16
genuine writers to implement verification. It was
trained using the backpropagation algorithm. The
network had one hidden layer with 16 neurons;
this was established on the basis of trial and
error. The output layer had 1 neuron with target
values of 1 and 0 comesponding to the genuine
writer class and forgery class respectively.

INPUT FIRST HIDDEN
LAYER LAYER

<Figure 4> Neural network architecture

The input layer accommodated either a 17
of I8-feature input constructed as follows. A total
of 16 AR coecfficients resulted from the 2'nd
order model for each of the 8 signature segments.
The distortion value resuiting from the use of the
DTW algorithm to warp the test signature to the
claimed reference writer's master signature was
the 17th element. The time of execution of each
signature was used in selected experiments with

skilled forgeries and formed the 18th element of
the input (more on this later in Section 6).

A total of 16 necural networks(one per
writer) made up of weights and biases were
generated. The verification process is shown in
<Figure 5>; when an identity claim is made, the
feature vector of the claimant is input to the
neural network of the claimed identity. If the
corresponding output of the network is above 0.5,
the identity claim is accepted, otherwise declared
as a forgery. The choice of the threshold deter-
mines the relative magnitudes of FA and FR
types of errors - it can be altered to tradeoff one
for the other depending on the application. The
various types of verification experiments involv-
ing forgeries that were carried out are discussed
in the next section.

[ #en 3 TRAINED AS GENUINE SIGS,
S
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<Figure 5> The neural network training and
testing process

5. Experiments and Results

Several experimental verification paradigms
were investigated to assess the impact of for-
geries on performance. For the sake of com-
pactness of description in the table of results that
follows, these experiments have been tagged with
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a character string identifier in parenthesis. In-
itially random forgeries (RF) were used to es-
tablish a baseline of performance. These results
are similar to the ones reported in [6] except that
DTW distortion was included as an additional
feature, The input to the neural network was a
17-element vector (16 AR coefficients form the 8
segments + DTW distortion). Each writer's neural
network was trained with 100 genuine signatures
and 150 random forgeries, and subsequently
tested with 50 genuine signatures and 150 ran-
dom forgeries. Then the casual forgery database
(CF) was used and the above experiment was
repeated using the same feature set. The only
difference was that 50 instead of 100 genuine
signatures were used to train each writer's neural
network.

Finally, the skilled forgeries were con-
sidered and four experimental variations were
formulated using this database. First, 4 out of the
8 forgers (chosen on a random basis) were
exclusively used for training purposes, with the
remaining 4 used for testing (SF1). This experi-
ment was repeated by swapping the set of forgers
between the training and testing phases. Se-
condly, one half of the skilled forgeries from all
8 forgers were used for training with the
remaining half used for testing (SF2). This ex-
periment was also repeated with a swapping of
forgeries between the training and testing phases.
Both SF1 and SF2 used 17-element input feature
vectors.  Lastly, SF1 and SF2 were repeated
(labeled SF3 and SF4), this time including the
time of execution of the signature as an ad-
ditional feature, resulting in an 18-element vector
(16 AR coefficients + DTW distortion + time of
execution). In all these four experiments (SF1-
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SF4), each writer's network was trained using
100 genuine signatures and 120 skilled forgeries
and tested with 50 genuine signatures and 120
skilled forgeries. However, it should be noted
that swapping of data between the training and
test data sets effectively doubled the number of
verification tests.

The results of the above experiments are
summarized in <Table 1>. Readers should note
that additional experimental variations and more
details could be found in [7].

<Table 1> Verification results

Experimental False False
variations Acceptance(%e) Rejection(%o)
RF 0.08 0.25
CF 1.00 3.62
SF1 139 7.10
SF2 229 9.00
SF3 8.20 1.00
sS4 0.78 1.60

From <Table 1> it is seen that the use of
casual forgeries (CF) results in a deterioration in
performance compared to random forgeries (RF) -
1% vs. 0.08% for FA and 3.62% vs. 0.25% for
FR. A couple for reasons for the drop in accu-
racies, which of beyond the nature of the for-
geries considered, and as follows. First, a reduced
number of signatures (50 vs. 100) were used in
the training process. Secondly, when writers sign
their own names they exhibit much more con-
sistency than when they "sign" the fictitious name
of John Q. Public, due to the amount of practice
that they have had with executing their own
signature. In this context, it is conceded that the
random forgery database is an artificial one.
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However, its use produces results that are worse
than would be obtained with true casual forgeries.

The results of the first skilled forgery ex-
periment (SF1) represent a significant drop-off in
performance in comparison with the random for-
gery (RF) case - 13.9% vs. 0.08% and 7.1% vs.
0.25% for FA and FR respectively. This was the
experiment where the 8 forgers were divided
evenly between the training and testing phases of
the experiment. It is evident that the classifier
performance if very sensitive to the nature of the
forgeries included in the experiment. Addition-
ally, the selection of the subset of the forger
population to be used in the training vs. testing
phases also affects the accuracy obtained. This
fact is confirmed by the results of the next ex-
periment (SF2). Here the signatures of the 8
forgers were divided evenly between the training
and testing phases, thus providing the neural
network with a more broad-based forgery training
set. Improved FA emor rates of 2.29% vs.
13.9% are obtained. However, the FR error rates
increase from 7.1% to 9% as a result of the
improved forgery definition; it should be noted
that the tradeoff between the two types of errors
is adjustable through the bias of the output
neuron. While having samples of a forger's work
to train the neural network is not a viable option,
the SF2 results are nevertheless revealing in as
much as they highlight the importance of the
modalities of the training process, in particular
the inclusion of good skilled forgeries. An exami-
nation of the confusion matrix corresponding to
this verification experiment also revealed that
some writers were easier to forge than others,
and that some forgers were more skilled than
others.

While the improvement in results obtained
between SF1 and SF2 was encouraging, the need
to find ways of improving them even further was
realized. It was decided to investigate the effect
of including an additional feature to characterize
signatures that was related to signature dynamics,
viz,, the time of execution. It was found that
writers were quite consistent in their signature
execution time. Unlike the spatial contour of a
signature, this aspect of a signature is hidden,
and one that is not easily reproduced by a forger.
Experiments SF1 and SF2 were repeated with the
inclusion of the time of execution of the sig-
nature as the 18th imput element. This produced
dramatic improvements in accuracies. For in-
stance, comparing SF3 and SF1, FA error rates
improve from 13.9% to 8.2% and FR error rates
improve from 7.1% to 1% respectively. Similarly,
comparing SF4 and SF2, FA error rates improve
from 2.29% to 0.7% and FR error rates improve
from 9% to 1.6% respectively. Finally, comparing
SF3 and SF4, while the FA error rate decreases
significantly from 8.2% to 0.78%, the FR error
rate is once again affected by the superior defi-
nition of forgeries (as discussed earlier) and
increases slightly from 1% to 1.6%. The SF4
error rates represent the best results obtained with
the skilled forgery database.

From the above discussion it is clear that
the methodology of training is a key factor af-
fecting performance. the best results obtained with
skilled forgeries corresponded to using one half of
the skilled forgery database uniformly picked from
all 8 forgers to train the network, with the other
half used for testing. While getting potential
forgers to provide samples is obviously not
feasible, the result highlights the importance of
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assembling a database of signatures that is com-
prehensive and representative. Additionally, the
potential of the duration of execution of the
signature as an additional feature not easily imi-
tated by forgers has been established; its inclusion
is critical to performance. An extension of this
approach, which uses individual times of execut-
ion of each segment of the signature, is worth
investigating.

6. Conclusions

A neural network architecture consisting of
a multilayer perceptron with a single hidden layer
has been developed for signature verification. We
are confident that the results obtained with ran-
dom and casual forgeries will hold up with larger
signature databases. The skilled forgery investi-
gation, however, is of a preliminary nature. But
despite the fact that the results are somewhat
poorer with the inclusion of skilled forgeries, it is
important to put them in context. Let us look at
the conditions under which the skilled forgery
database was created. The forgers were given an
unlimited amount of time to practice forgeries
and were allowed to look at the original sig-
natures while providing the forgeries. It can be
argued that the former situation is conceivable
(though perhaps not universally likely) in a
real-life situation. However, the latter situation is
probably unlikely and unworkable (for the forger)
in the majority of circumstances, where the per-
son signing would be under observation. But it is
evident that, despite the fact that a truly skilled
forgery database is hard to acquire, it is ne-
cessary to conduct a more comprehensive inves-
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tigation of the skilled forgery case, in order to
validate the methods developed here for com-
mercial use.
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