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A Theoretical Analysis of Thermic Endfire Interstitial Applicator

Jong-Kweon Park - Hyo-Joon Eom

Abstract

A novel approach for modeling the thermic endfire interstitial applicator is presented. A hypothetical semi-infinite circular cylinder is
added in the endfire direction in order to facilitate the theoretical modeling approach. The Fourier transform and mode-matching technique
is utilized to obtain a solution in fast-convergent series. Numerical computations for the input impedance are performed to check the
validity of the theoretical model.
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I. INTRODUCTION

A thermic endfire interstitial applicator has been used for mi-
crowave hyperthermia applications and extensively studied t~Bl
In [1], a thermic endfire interstitial applicator has been analyzed z
using the equivalence principle and the reflection coefficient and
near field distribution were calculated. The effect of a catheter
on the SAR (Specific Absorption Rate) distribution around the
coaxial-slol antenna has been also studied in [2] utilizing the
moment method. In [3], effective impedance of a circumferential
slot on a coaxial transmission line was calculated using the
transmission line theory. In the present paper, we intend to mo-
del a thermic endfire interstitial applicator by introducing a
hypothetical semi-infinite circular cylinder at the end of intersti-
tial applicator. We will use the Fourier transform and mode
matching [4] to obtain a rapidly convergent series solution for
a thermic endfire interstitial applicator. In the next section, we
summarize the final theoretical expressions and their numerical
results.
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[I. THEORETICAL AND NUMERICAL RESULTS
Fig. 1. Geometry of thermic end-fire interstitial applicator.
Consider the thermic end-fire interstitial applicator as shown
in Fig. 1 under TEM mode incidence. For analytic convenience, —iwe, = 1 W e .
a semi-infinite circular cylinder is placed in the endfire direction How(p,2) = —— | EnlDHD (vp)e ™ de ()
near the end of the interstitial applicator. In regions (I) and (IV),

the fields are where  R(ko) = Jo(ko)No (ka) — Ny (ko) ], (ka), b=\ K — &,
e ) m=Vale, v=VE—¢*, and k= gee, fori=12,

Hay(po,2) = émp + twe, —72T fo —}d EE)R (kp)cos(8z)de 3,4. R'(.) denotes differentiation of A(.) with respect to the
() argument. 7,(.) and HP(.) are the »® order Bessel and
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Hankel functions of the first kind, respectively. N;(.) is the 0"
order Neumann function. Note that e, (i1,2,3,4) are the rela-
tive permittivities of regions (1) through (IV).

In regions (II) and (M), the fields are represented as a
summation of the discrete modes.

iwe

Hon(p,2)= 2. E o Ry(kmep)cosan(z+8)  (3)
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_ HP (ke H{P (k w30)
Whel'e Rn(kmzp)—l)m Hl(l)(km b) +Qm (1)(km20) v

By =\ B — . ay=mrld, ksy =\ Ki— b5 , and b,
= /L. We use the Fourier transform and mode-matching
technique™ to enforce the boundary conditions on the field
continuities. Performing similar procedures as used in {4] at p
=h, we obtain the following simultaneous equations:
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where §,, is the Kronecker delta, «,, =2 (m=0), 1 (m=
2, ...), and

L= 2 ["LH 4,0 aDar Q)
A, = FLEL(O) + Gu(= 0] G
Gh(p) = =L e o )

In the same manner by applying the boundary conditions at
p=c, we get
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It is necessary to numerically integrate (11) through (14)
using residue calculus or some other numerically -efficient
scheme. The input impedance at z=-(d+g) is related to the
reflection coefficient I',, by

- 1 + Fz‘n
Zz'n:Zc ]-'_'_Fm (16)
E (p, 2) 2ik, (d+ )
Fz‘n: zPI ’ =—[1+L k)
ELi(0,2) ze—(dt g [ o (ke
(17
< klR (kmgb)
Lok = 205 (6~ &)
s [(=D™sink(d+ g —sin (£ g)] (18)

whete Z.= v g/ Zn( )/ (27) is the characteristic impe-
dance of the input coaxial line. It is possible to evaluate the

Table 1. Comparison of our theory with [4]. (a=0.064 cm,
=(0.2453 cm, ¢=3.81 cm, d=03175 cm, en=c¢n

26, en=eu=10, g=r=0.0, L=0.0lcm)
Frequency Predicted [4] Our theory
[GHz] (Iw) (I'i)
1.0 —0.91571 —i 036941 | —0.91586 — i 0.36939
1.5 —0.72116 — i 0.67392 | —0.72128 - i 0.67396
3.0 0.29018 + i 0.50173 0.29019 + i 0.50176
4.0 -0.20957 — 1 091768 | —0.2091 — i 0.91694
Table 2. Convergence behavior as a function of L(a=0.

255 mm, b=c¢=0.84mm, d=20mm, en= 2=
2.04, £s=¢n =47+i159211, g=¢=0.0, f=245
GHz, and mode number in region (I[)=3)

L |{Mode No. in
[em] | region(Il)

Input Impedance
(Zw)

Reflection Cocff.

3
7
10

10.8372 +1 20.2795
10.6784 +1 20.4507
10.637 +1 20.4809

-0.4793 - i 04931
—0.479% — 1 04987
—0.4803 - i 0.4999

5.0

10
15
20
30

10.9409 +1i 20.2235
10.8694 +1 20.3684
10.8132 +1 20.4409
10.7447 +1 20.5097

—-0.4781 — i 0.4905
-0.4774 - 1 04943
-04774 — i 0.4966
-04777 — i 04989

10.0

20
30
40

10.9376 +1i 202334
10.866 +1i 20.373
10.8109 +1 20.4434

—-0.4780 — i 04907
—0.4774 — 1 04945
—-0.4774 - i 0.4966
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field distribution near the radiation slot by using Eqs. (2) and
(3). To validate our theory, our results I",, in a limiting case

L—0 are compared with [4], thus confirming an excellent
agreement as shown in Table 1. In Table 2, we illustrate the
convergence rate of our series solution for various L. The values
for £,5 and .4 correspond to the relative permittivities of con-
ductive media - phantom simulating muscle tissues. When L=
1, the input impedances for mode (m) numbers 3, 7, and 10 are
similar each other. This means that our series solution i3 seen
to converge rapidly. Since the numerical results for L=1 and 10
are almost identical, the effect of the hypothetical semi-infinite
circular cylinder may be considered negligibly small.

I. CONCLUSION

A simple analytic series solution for the radiation from a
thermic endfire interstitial applicator is obtained using the
Fourjer transform. A hypothetical semi-infinite circular cylinder,
which is added near the applicator, allows us to obtain the
rigorous series solution. Numerical computations are performed
to confirm the validity of our theoretical approach based on the
Fourier transform and mode matching,
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