Abstract
The World Wide Web has become one of the major services provided through Internet. When searching the vast web space, users use bookmarking facilities to record the sites of interests encountered during the course of navigation. One of the typical problems arising from bookmarking is that the list of bookmarks lose coherent organization when the the becomes too lengthy, thus ceasing to function as a practical finding aid. In order to maintain the bookmark file in an efficient, organized manner, the user has to classify all the bookmarks newly added to the file, and update the folders. This paper introduces our learning agent called BClassifier that automatically classifies bookmarks by analyzing the contents of the corresponding web documents. The chief source for the training examples are the bookmarks already classified into several bookmark folders according to their subject by the user. Additionally, the web pages found under top categories of Yahoo site are collected and included in the training examples for diversifying the subject categories to be represented, and the training examples for these categories as well. Our agent employs naive Bayesian learning method that is a well-tested, probability-based categorizing technique. In this paper, the outcome of some experimentation is also outlined and evaluated. A comparison of naive Bayesian learning method alongside other learning methods such as k-Nearest Neighbor and TFIDF is also presented.
웹은 이제 인터넷의 중요한 서비스중의 하나가 되었다. 웹 공간을 탐색할 때 사용자들은 항해하는 동한 만나는 흥미 있는 사이트들을 기록하기 위해 북 마크 기능을 이용한다. 북 마크 기능을 이용할때 겪는 문제중의 하나가 거듭된 새로운 북 마크의 추가로 인해 북 마크 리스트의 길이가 길어지면 북 마크 리스트가 일관성 있는 구성을 잃어버리게 되어 실제적인 도움을 주기 어렵다는 것이다. 사용자가 북 마크 파일을 효율적이고 체계적으로 유지하기 위해서는 북 마크 파일에 추가되는 새로운 북 마크들을 카테고리별로 분류하여 신규 폴더를 찾아 삽입해주어야 한다. 본 논문에서는 대응되는 웹 문서들을 다운 받아 내용을 분서함으로써 자동으로 북 마크를 분류하는 BClassifier라 불리는 학습에이전트를 소개한다. BClassifier 에이전트를 위한 훈련 예의 주된 공급원은 바로 사용자가 명시적으로 이미 주제에 따라 몇 개의 북 마크 폴더들로 분류해놓은 북 마크들이다. 여기에 주제 카테고리들을 확대하고 이들에 대한 훈련 문서들을 확보하기 위해 추가적으로 Yahoo 사이트의 최상휘 카테고리들로부터 웹 문서들을 수집하여 훈련 예에 포함시킨다. BClassifier 에이전트는 잘 알여진 확률기반의 분류 기술이나 나이브 베이지안 학습 방법을 채용하고 있다. 본 논문에서는 BClassifier 에이전트에 관한 몇 가지 실험 결과를 소개하고 평가한다. 나이브 베이지안 방법과 k-최근접 이웃 방법, TFIDF 등과 같은 서로 다른 학습 방법들과 비교 실험 결과도 제시한다.