Production of Maltopentaose and Biochemical Characterization of Maltopentaose-Forming Amylase

  • Kim, Young-Min (Department of Biomedical Engineering, Chonnam National University) ;
  • Ryu, Hwa-Ja (Department of Fine Chemical Engineering, Chonnam National University) ;
  • Lee, Sun-Ok (Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Seo, Eun-Seong (Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Lee, So-Young (Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Yoo, Sun-Kyun (The Engineering Research Institute, Chonnam National University) ;
  • Cho, Dong-Lyun (Department of Fine Chemical Engineering, Chonnam National University) ;
  • Kim, Do-Man (Division of Chemical Engineering and Research Institute for Catalysis, Chonnam National University/East Coastal Marine Bioresources Research Center at Kangnung National University) ;
  • Kimura, Atsuo (Graduate School of Agriculture, Hokkaido University) ;
  • Chiba, Seiya (Graduate School of Agriculture, Hokkaido University) ;
  • Lee, Jin-Ha (Graduate School of Agriculture, Hokkaido University)
  • Published : 2001.08.01

Abstract

Bacillus sp. AIR-5, a strain from soil, produced an extracellular maltopentaose-forming amylase from amylose and soluble starch. This bacterium produced 8.9 g/l of maltopentaose from 40 g/l of soluble starch in a batch fermentation and the maltopentaose made up 90 % of the maltooligosaccharides produced (from maltose to maltoheptaose). The culture supernatant was concentrated using a 30 K molecular weight cut-off membrane and purified by DEAE-Cellulose and Sephadex G-150 column chromatographies. The purified protein showed one band on a native-PAGE and its molecular mass was estimated as 250 kDa. The 250-kDa protein was composed of tetramers of a 63-kDa protein. the isoelectric point of the purified protein was pH 6.9, and the optimum temperature for the enzyme activity was $45^{\circ}C$. The enzyme was quickly inactivated above $55^{\circ}C$, and showed a maximum activity at pH 8.5 and over 90% stability between a pH of 6 to 10. The putative N-terminal amino acid sequence of AIR-5 amylase, ATINNGTLMQYFEWYVPNDG, showed a 96% sequence similarity with that of BLA, a general liquefying amylase.

Keywords

References

  1. Kor, J. Appl. Microbiol. Biotechnol. v.26 Enzymatic synthesis of new oligosaccharide using glucansucrases Baek, J.S.;D. Kim; J.H.Lee; P.S.Chang; N.S.Han;J.F. Robyt
  2. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantitics of protcin utilizing the principle of protein-dye binding Bradford, M.M.
  3. J. Bacteriol. v.128 Stable, inducible themoacidophilic α-amylase from Bacillus acidocaldarius Buonocore, V.;C. Caorale;M. D. Rosa;A. Gambacorta
  4. Microbial Enzymes and Biotechnology (2nd ed.) Recent advances in microbial amylase Fogarty, W.M.;C.T. Kelly
  5. Anal. Biochem. v.195 Miniaturization of theree carbohydrate analyses using a microsample plate reader Fox, J.D.;J.F. Robyt
  6. Appl. Environ. Microbiol. v.63 Cloning, sequencing and expression of the gene encoding extracellular α-amylase from Pyococcus furiosus and biochemical characterization of the recombinant enzyme Guoqiang, D.C.;A. Vielle;J.G. Zeikus
  7. J. Biol. Chem. v.271 Amino acid sequence and molecular structure of an alkaline amylopullanase from Bacillus that hydrolyzed α-1,6 linkages in polysaccharides at different active sites Hatada, Y.;K. Igarashi;K. Ozaki;K. Ara;J. Hitomi;T. Kobayahi;S. Kawai;T. Watabe;S. Ito
  8. Agr. Biol. Chem. v.52 Production of alkaline amylase by alkalophilic microorganisms. Alkaline amylase from alkalophilic Bacillus sp. H-167 Horikoshi, T.
  9. J. Mol. Evol. v.45 Domain evolution in the α-amylase family Janecek, S.;B. Sevensson;B. Henrissat
  10. Appl. Environ. Microbiol. v.64 Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequence Kazukai, I.;Y. Hatada;H. Hagihara;K. Saeki;M. Takaiwa;T. Uemura;K. Ara;K. Ozaki;S. Kawai;T. Kobayashi;S.Ito
  11. J. Microbiol. Biotechnol. v.9 Facile purification and characterization of dextransucrase from leuconostoc mesenteroides B-512FMCM Kim, D.;D.W. Kim
  12. J. Microbiol. Biotechnol. v.9 Enzymatic modification of cellulose using Leuconostoc Mesenteroides B-742CBM dextransucrase Kim, D.;Y.M. Kim;M.R. Park;H.J. Ryu;D.H. Park;J.F. Robyt
  13. J. Microbiol. Biotechnol. v.10 Cloning and sequencing of the α-1→6 ddextransucrase gene from Leuconostoc mesenteroides Kim, H.S.;D. Kim;H. J. Ryu;J.F. Robyt
  14. Kor. J.Food Sci. Technol. v.27 Physical and physiological properties of isomaltooligosaccharides and fructooligosaccharides Kim, K.R.;C. Yook;H.K. Kwon;S.Y. Hong;C.K. Park;K.H. Park
  15. Kor. J. Food Sci. Technol. v.13 The effects of addition of oligosaccharide on the quality characteristic of tomato jam Kim, K.S.;Y.K. Chae
  16. Eur. J. Biochem. v.265 mechanism of porcine pancreatic α-amylase inhibition of amylose and maltopentaose hydrolysis by kidney bean (Phaseolus vulgaris) inhibitor and comparison with that by acarbose Koukiekolo R.;V.L. Berre-Anton;V. Desseaux;Y. Moreau;P. Rouge;G. Marchis-Mouren;M. Santimone
  17. Agr. Biol. Chem. v.54 Preparation and some properties of a novel maltopentaose forming enzyme of a Pseudomonas species Kobayashi, S.;H. Okaemoto;K. Hara;H. Hashimoto
  18. Nature v.227 Cleavage of structural proteins during the assembly of the heas of bacteriophage T4 Laemmli, U.K.
  19. J. Mol. Biol. v.246 Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2 A resolution Machius, M.;G. Wiegand;R. Huber
  20. Enzyme microbiol Technol. v.24 A thermostable α-amylase producing maltohexaose from a new isolated Bacillus sp. US100: Study of activity and molecular cloning of the corresponding gene Mamdouh, B.A.;M. Mezghani;S. Bejar
  21. J. Biol. Chem. v.236 Thermostable α-amylase of Bacillus stearothemophillus Manning, G.B.;L. L. Campbell
  22. J. Bacteriol v.163 Nucleotide sequence of the Bacillus stearothermophilus amylase gene Nakajima, R.;T. Imamaka;S. Aiba
  23. Japanese Kokai Koho Patent 9,049,584 Heat-stable alkaline amylase from Bacillus Ozaki, A.;A. Tanaka
  24. Anal. Biochem. v.162 A two-step procedure for efficient electrotransfe of both high-molecular-weighr(〉400,000)and low-molecular-weight(〈20,000) proteins Otter, T.;S.M. King;G.B. Whitman
  25. Biotechnology v.10 Production of active Bacillus licheniformis α-amylase in tobacco and its application in starch liquefaction Pen, J.;L. Molendijk;W. J. Quax;P.C. Sijmons;S.J. van Ooyen;P.J. van den Elzen;A. Hoekema
  26. Anal. Biochem. v.167 Rapid isoelectric focusing in a vertical polyacrylamide minigel system Robertson, E. F.;K. K. Creighton;P.J. Malloy;H.C. Reeves
  27. Arch. Biochem. Biophys v.145 Isolation, purification and characterization of a maltotetraose-producing amylase form Pseudomonas stutzeri Robyt, J.F.;R.J. Ackerman
  28. Arch. Biochem. Biophys v.155 A thermophilic extracellular α-amylase from Bacillus licheniformis Saito, N.
  29. In: Handbook of Amylases and Related Enzymes: Their sources isolation methods, properties and applications Manufacture of maltose Sakai, S.
  30. Appl. Environ. Microbiol v.63 Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing α-amylase from Streptococcus bovis 148 Satod, E.;T. Uchimura;T. Kudo;K. Komagata
  31. In: Handbook of Amylases and Related Enzymes:Their sources, isolation methods, properties and applications Anomalously linked oligosaccharides mixture(Alo mixture) Takaku, H.
  32. Agr. Biol.Chem. v.46 Production of maltohexaose by α-amylase from Bacillus circulans G-6 Takasaki, Y.
  33. The Annual Meeting of the Agricultural Chemical Society of Japan Abstracts of Papers Takasaki, Y.
  34. J. Biol. Chem v.258 Amino acid sequence of α-amylase from Bacillus amyloloquefaciens deduced from the nucleotide sequence of the cloned gene Takkinen, K.;R. F. Pettersson;N. Kalkkinen;I. Palva;H. Soderlund;L. Kaariainen
  35. US patent 0400042 Diagnostic reagent for the determination of amylase Thomas, H.;C.A.M. Viejo
  36. Microbiol.Mol. Biol. Rev. v.64 Signal peptide-dependent protein transport in Bacillus subtilis:A genome-based survey of the secretome Tjalsma, H.;A. Bolhuis;J.D. Jongbloed;S. Bron;J.M. van Dijl.
  37. J. Biochem. v.63 Correlation of the sulfhydryl group with the essential calcium in Bacillus subtilis saccharifying α-amylase Toda, H.;H. Narita.
  38. Handbook of Amylass and Related Enzymes: Their sources, isolation methods, properties and applications Application of amylase and related enzymes to industry Tosiaki, K.
  39. Biochem. Biophys. Res. Commun. v.151 Nucleotide sequence of the maltohexaose-producing amylase gene from an alkalophilic Bacillus sp. #707 and structural similarity to liquefying type α-amylases Tsukamoto, A.;K. Kimura;Y. Ishii;T. Takano;K. Yamane
  40. Enzymes in Detergency Application of amylases in detergents UpaDek, H.;B. kottwitz;J.H. van Ee(eds.);O. Misset(eds.);E.J. Baas(eds.)
  41. CRC Rev. Biochem. Mol. Biol. v.24 Microobial amylolytic enzymes Vihinen, M.;S. Aiba
  42. Agr. Biol. Chem. v.49 Purification and properties of an amylase from Bacillus cereus NY-14 Yoshigi, N.;T. Chikano;M. Kamimura
  43. Agr. Biol. Chem. v.49 Characterization of maltopentaose-producing bacterium and its cultural conditions Yoshigi, N.;T. Chikano;M. Kamimura