WELL-POSEDNESS FOR THE BENJAMIN EQUATIONS

  • Published : 2001.11.01

Abstract

We consider the time local well-posedness of the Benjamin equation. Like the result due to Keing-Ponce-Vega [10], [12], we show that the initial value problem is time locally well posed in the Sobolev space H$^{s}$ (R) for s>-3/4.

Keywords

References

  1. Physica D v.40 Nonlocal models for nonlinear, dispersive waves L. Abdelouhab;J. L. Boca;M. Felland;J.-C. Saut
  2. J. Differential Equations v.152 Existence and stability of solitary wave solutions of the Benjamin equation J. Angulo
  3. J. Funct. Anal. v.158 no.2 Interaction Equations for Short and Long Dispersive D. Bekiranov;T. Ogawa;G. Ponce
  4. J. Fluid. Mech. v.29 no.2 Internal waves of permanent form in fluids of great depth T. B. Benjamin
  5. J. Fluid Mech. v.245 A new kind of solitary waves T. B. Benjamin
  6. GAFA. v.3 Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear equations;Ⅱ. The KdV equation J. Bourgain
  7. J. Funct. Anal. (to appear) On the Cauchy problem for the Zakharov system J. Ginibre;Y. Tsutsumi;G. Velo
  8. Comm. Partial Differential Equations v.11 no.10 On the Cauchy problem for the Benjamin-Ono equation R. J. Iorio Jr.
  9. Comm. Appl. Math. v.46 Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction mapping principle C. E. Kenig;G. Ponce;L. Vega
  10. Duke Math. J. v.71 The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices C. E. Kenig;G. Ponce;L. Vega
  11. Trans. Ameri. Math. Soc. v.342 On the generalized Benjamin-Ono equation C. E. Kenig;G. Ponce;L. Vega
  12. J. Amer. Math. Soc. v.9 A bilinear estimate with applications to the KdV equation C. E. Kenig;G. Ponce;L. Vega
  13. Invent. Math. v.134 no.3 Smoothing effects and local existence theory for the generalized nonlinear Schrodinger equations C. E. Kenig;G. Ponce;L. Vega
  14. J. Differential Equations v.152 L² global well-posedness of the initial value problem associated to the Benjamin equation F. Linares
  15. Ill-posedness issues for the Benjamin-Ono and related equations, preprint L. Molinet;J. C. Saut;N. Tzvetkov
  16. Counter examples to bilinear estimates related with the KdV equation and the nonilnear Schrodinger equation, preprint K. Nakanishi;H. Takaoka;Y. Tsutsumi
  17. Diff. Integral Equations v.4 On the global well-posedness of the Benjamin-Ono equation G. Ponce
  18. Advances. Math. Sci. Appl. v.10 Well-posedness for the higher order nonlinear Schrodinger equation H. Takaoka
  19. SIAM J. Math. Anal v.20 The Cauchy problem for the Kortewed-de Vries equation with measure as initial data H. Takaoka