Design of Nanocluster Based Material with Catalytic Properties

  • Tadachika Nakayama (Institute of Scientific and Industrial Research, Osaka University) ;
  • Kim, Chang-Yeoul (Institute of Scientific and Industrial Research, Osaka University) ;
  • Tohru Sekino (Institute of Scientific and Industrial Research, Osaka University) ;
  • Choa, Yong-Ho (Division of New Materials Engineering, Chonbuk National University) ;
  • Takafumi Kusunose (Institute of Scientific and Industrial Research, Osaka University) ;
  • Yamato Hayashi (Institute of Scientific and Industrial Research, Osaka University) ;
  • Koichi Niibara (Institute of Scientific and Industrial Research, Osaka University)
  • Published : 2001.09.01

Abstract

Modified inert gas condensation method was used to produce the nanocluster composites of $CuO/CeO_2$. High-resolution TEM, SEM and catalytic measurements have been used to characterize the samples and study the synergistic effect between the CuO phase and $CeO_2$(ceria) support. By varying the He pressure, the heating temperature and configuration of the heating boats inside the modified gas condensation chamber, nanoclusters of varying sizes, shapes and composition can be produced. The composition and nanostructured morphology were shown to influence the catalytic properties of the system. A copper content around 10 at% with a morphology that favors high-energy surfaces of ceria is shown to be beneficial for a high catalytic activity.

Keywords

References

  1. Nanostr. Mater. v.9 H.Hahn
  2. Acta Mater. v.48 H.Gleiter
  3. Advanced Technology of Nano-materials T.Nakayama
  4. Scripta Mater. v.44 T.Nakayama;B.Skarman;L.R.Wallenberg;T.Sekino;Y.H.Choa;T.A.Yamamoto;K.Niihara
  5. Proc. of 4th Seminar on Core University Program between Japan and Korea T.Nakayama;T.Sekino;T.Kusunose;K.Niihara
  6. J. Catal. v.86 H.C.Yao;Y.F.Yao
  7. Chem. Eng. J. v.64 J.Y.Ying;A.Tschope
  8. Catal. Rev. Sci. Eng. v.38 A.Trovarell
  9. Ph. D. Thesis, Chalmers University of Technology A.Holmgren
  10. J. Catal. v.153 W.Liu;M.Flytzani-Stephanopoulos
  11. Surf. Sci. v.429 S.N.Jacobsen;U.Helmersson;R.Erlandsson;B.Skaman;L.R.Wallcnberg
  12. J. Catal. v.181 B.Skaman;L.R.Wallenberg;P.O.Larsson;A.Andersson;J.O.Bovin;S.N.Jacobsen;U.J.Helmersson
  13. Jap. J. of Appl. Phys. v.33 T.A.Yamamoto;R.D.Shull;P.R.Bandaru;F.Cosandey;H.W.Hahn
  14. Material Integration v.13 T.Nakayama
  15. J. Mat. Sci. v.35 T.Nakayama;T.A.Yamamoto;Y.H.Choa;K.Niihara
  16. Key Eng. Mater. v.161-163 T.Nakayama;T.A.Yamamoto;Y.H.Choa;K.Niihara
  17. Surf. Sci. v.339 J.C.Conesa
  18. J. Phys. Chem. v.100 E.S.Putna;J.M.Vohs;R.J.Gorte
  19. J. Phys. Chem. v.100 H.D.Ford;R.J.Gorte