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New Blind Channel Identification Based on Adaptive Eigenvalue
Decomposition Algorithm

Kyung-seung Ahn*, Eul-chool Byun*, Heung-ld Baik** Regular Members

o ok
=2 =

A AdelA EERRl= A e i F8¢ FAlelvk Belle A A zA §AE o)gsld g
7 slov Hdele enfdER SRS o] gt S5 qlEl ofdle]E o]8q AFe] 25 Eﬂl%l—"*
o] 25t whlell 9% WS 37t AdEw glck 7)1Ee] dmelEe 4H3e] ghe A LS whie] Mk
7| el kel A Adellde dal: e U G Sl gk A Aol &]

#ell W38k ZiEe Ade] Y24 $oe B ARE FTPET sleh B mEeXe olHd 2 Ei
o Alzbebel ARATIRA Tele 48 daEEe ARl oF o] §ste *?—Jr"“: Ad 94 d3ElEE A
ok A T FE Aol AT 5L By ¥uk ohetk & dalEE Br) 909 A9 A Ay
+ Hog =2oAdYe Sl PEsiycl

3 ] =l° I-J

i

ABSTRACT

Blind adaptive channel identification of communication channels is a problem of important current theoratical
and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna
artay or time oversampling, leading to the so-called, second order statistics techniques. And adaptive blind
channel identification techniques based on a off-line least-squares approach have been proposed but this method
assuming noise-free case. The method resorts to an adaptive filter with a linear constraint, In this paper, a new
approach is proposed that is based on eigenvalue decomposition. Indeed, the eigenvector corresponding to the
minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And
we present a adaptive algorithn to solve this problem. The performance of the proposed technique is evaluated
over real measured channel and is compared to existing algorithms.

1.ME

In recent years, the interest in blind channel
identification problem has received considerable
attention. The basic blind channel identification
problem involves a channel model where only the

observation signal is available for processing in
the identification channel. Earlier blind channel
identification approaches mostly depend on higher
order statistics (HOS), because the second order
statistics  (SOS) does not contain  phase
information  for  stationary  signal[1]-[4]. In
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HOS-based methods, because the performance
index as the optimization criterion is nonlinear
with respect to estimation parameters and these
methods require a large amount of data samples.
These methods have the disadvantage that their
computational complexity may be large. See, for
example, [3] and references therein. Since the
seminal work by Tong et al the problem of
estimating the channel response of multiple FIR
channel driven by an unknown input symbol has
interested many researchers in signal processing
and communication fields. This is achieved by
exploiting assumed cyclostationary  properties,
induced by oversampling or antenna array at the
receiver part[3](4]. Up to date, the implementation
of the SOS based methods have been mostly
block based algorithm rather than adaptive
algorithms. Most communication channels are
time-varying in practice. Therefore, the algorithms
should be able to track the change of the channmel
impulse response. Moreover, in a fast fading
channel, the multdpath chamnels in  wireless
communications vary rapidly, and we only have a
few data samples corresponding to the same
channel characteristics. The adaptive algorithms
for blind adaptive channel identification based on
SOS have ©been shown  Blind channel
identification technique has been developed in
adaptive algorithm based on vector-correlation
method[7])-[9]. But most algorithms neglected the
effect of channel noise.

In this paper, a novel adaptive blind identifi-
cation algorithm is proposed by exploiting 2
constrained adaptive filter in noisy envircnment.
We show that the minimization of the error
variance, subject to a specific constant norm
constraint, permits the derivation of asymptotically
noise-free case. And it can be implemented
adaptively at low cost using LMS-like algorithm.

Most notations are standard: vectors and
matrices ate boldface small and capital letters,
respectively; the matrix transpose, the complex
conjugate, the Hermitian, the Moore-Penrose
inverse, and convolution are denoted by (.)T, (J*x,
O, )", and ®, respectively; I, is the PxP

1216

identity matrix; E[ -] is the statistical expectation.
This paper is organized as follows. In section 1I,
we review the multichannel blind identification
problem and block LS approach. And the existing
adaptive algorithms of the block LS methods are
described also. A mnovel blind channel
identification  technique based on eigenvlaue
decomposition and adaptive implementation are
proposed in section III. Simulation results with
real measured channel are performed in section
V1. Section V concludes our results.

Il. PROBLEM FORMULATION AND
LS APPROACH

1. Channel Model and Assumptions
Let x(#) be the signal at the output of a noisy
channel

x0)= 3 stoht k1) +v()
Pl 1

where s(k) denotes the transmitted symbol at time
kT, h{t) denotes the continuous-time channel
impulse response, and h(f) is additive noise. The
fractionally-spaced discrete-time model can be
obtained either by time oversampling or by the
sensor array at the receiver. As shown in [3], the
single channel system can be considered as the
multichannel system by the sampling the received
signal at a rate faster than the input symbol rate.
The source signal s(n) then passes through M
equivalent symbol rate linear filters. And as
shown in Fig. 1, xi{n} denotes the output from
the ith channel with the noisy FIR channel
impulse response h{n), which is driven by the
same input s(n). Clearly, for linearly modulated
communication sigrals, x{r), a(n), s(n), w(n), and
hi(n) are related as follows:

I
x(ny="Y h(k)s(n—k)+v,(n)
k=0
=a,{n)+v,(n), i=LA M @

where L is the maximum order of the M
channels.



TR AE TR L8 dnEEE o4y A2 ERRls A Y

h,(n) a,n) o x,{n)
v,(n)

s(n) Py %,(n)
; V()

hy(n) 2u(®) xyy(n}

Fig. 1 SIMO model with M subchannels.

The blind identification problem can be stated
as follows: Given the observation of channel
output, determine the channels and further recover
the input signals. As in classical system
identification problems, certain conditions about
the channel and the source must be satisfied to
ensured identifiability. In the multichannel blind
identification case, three conditions are shared by
many different approaches. We assume the
following throughout in this paper about the
channel and source conditions.

Al) Subchannels do not share common zeros, or
in other words, they are coprime.

A2) The noise is zero mean, white with known
covariance, no cochannel correlation, and
uncorrelated with source signal.

A3) The channel has known order L.

Assumption 1 provides the necessary and
sufficient condition to the unique solution for the
blind channe! identification
condition has been regarded as the major
difficulty of blind algorithms using the SOS[6].

The assumption that L is known may be
practical. To address this problem, there are three
approaches[6]). First, channel order detection and

problem.  This

parameter estimation can be performed separately.
There are well-known order detection schemes
that can be used in practice such as Akaike's
information criterion. Second, some statistical
subspace methods require only upper bound of L.
Third, channel order detection and parameter
estimation can be performed jointly. Similarly, the
noise variance 2 may not be known in practice,

x(n}

x )

Fig. 2 The cross-relation between two subchannels.

but it can be estimated in many ways. For
example, the noise variance estimation and
channel order detection can be performed using
singular values of the estimated covariance matrix.

2. LS Approach to Blind Channe!
ldentification

In this paper, consider a special case, when the
channel output is two times oversampled or there
are two antennas at the receiver, this is equivalent
to two channel representation {M=2). From the
Fig. 2, in the absence of noise, it is apparent that
the output of cach subchannel is

x,(n) =k (n) B®s(n)
x,(n) = hy(n) B s(n) (3

Then

h(n)® x,(n)=h,(n) @[#(n) & s(n)]
=h(n}&[h,(n) B 5(n)]
=h (n)®x,(n) 4

Obviously, the above equation is not applicable
for a single channel system. We can write (4) as

h.(n)
X (L) ‘X, Ly P =0
X, (L) -X( )]{h](n)} -
where An=[hm(L),-hn(L}]", m=1,2, and
x, (0} A x,(L)
X, (L)= M 0 M
x N-L) A x(N) Q)
Let us define as follows:
h=[h] BT, X=X, MX,]" )

In the noise free context, h is the null space of
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X, and equivalently (5) can be written as
follows[5]

X(Lh=0 ®)

Equation (8) provides the unique solution for the
identification problem if and only if subchannels
are coprime, ie., they do not share any common
zeros. When the channel is corrupted by additive
noise, we can estimate h by solving the following
LS problem

. Lol
minil X(L)hl ©

where h is subject to nontrivial constraints, e.g.,

Il Bl=1 or ¢ h=1 for a constant vector c.
Although the treatment of the noise is in (9) may
be statistically optimal, it is perhaps a natural
simple way of formulating this problem.

3. Existing Algorithms

It is well known that all blind identification
methods suffer from a possible scale ambiguity{5].
Therefore, some constraint must be imposed while
minimizing (9), as discussed earlier, In this
section, we review existing adaptive channel
identification algorithms that use linear constraint.

3.1 Heath's Algorithm™

In [8], the algorithm has been developed by
firstly assuming that m(0)=1. This implies that a
linear constraint. This is reasonable because in
practice, the unknown scale factor is typically
overcome by employing automatic gain control
andfor differential encoding. With this assumption,
the last column of X(L) is removed, forming,

%,(L), and place this column on the order
side, thus (5) becomes

h x, (L)
= 2
[x,) XZ(L)]{H }: M
: x, (L}

= X, h=% (10)

where Ty,=[&, (L), & (DT
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The batch LS formulation in (10) leads
naturally to a recursive formulation, since the
channels are coprime and assuming N-L+12=2L1+1,
the (N-L+1)x(2L+1) matrix Xy; is full rank
With this assumption, we can write the following
LS batch method for finding estimated channel

h=(X"X)"'X"% an

Let  X(m=[x(n-L), - mim)-xa(n-L), -xa(n+ 1))
be the regression vector at each time n and let
xn) be the addition to x. Following similar
derivation for the LMS algorithm in [1], (11) can
be solved in an adaptive manner using a
stochastic gradient descent algorithm. An error can
be formed the difference between the predicted
and the actual value of the (n+1)th data point
x2(n) from the other channel as in

e(n+D=x,(n+1)— X" (n+Dh(n) (12)

This weighted error is then used to update the
channel estimate

h(n+1) = h(n)+pe” (mXin+1) (13)

3.2 Yoshito’s Algorithm'®

In [9], it has been shown that the cost function
is a quadratic form and has the unique solution.
To achieve a blind system identification, a cost
function as mean square error (MSE)} of output
signal x(n) and xa(n) as follows:

J = Elle(m) ']
= E[l x,(n) - x,(n) '] (14)

Let M=2 in (1) and substituting (1} into (14), we

get
2
} (15)

J:El

To avoid trivial solution as described in Heath’s

L L
Y B ox(n—k)= ¥ by (k)x,(n—k)
k=0 k=0

algorithm ecarly, we also assume that n(0)=1
which implies that a linear constraint. Then we
get
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We now rewrite (16) in matrix and vector form

L L
x ()} + Y B k) (n— k)~ Y By (R)x, (n — k)
k=l k=0

as follows:

J=Ellx (m)+h{x (n)—hix,(n)F] an

where

X (m=[xr-DA , x@m-L)]
X, (m) =[x (n),A , x;(n— D
h, = [h'l,lvA ' hl.L ]T

by =[hsg A by T as)

We denote x(n) and h as follows:

x(m)=[-X (n} xz(m]", h=[h, h,] (19

Therefore, we may write (17) as

J =E[lx(ny-h"xF]
= E[x7{m)=2x, (" x(n) + h" x(n)x" (n)h]
=0} —2h" E[x (n)x(m]+h" E[x(m)x(m)h  (20)
Equation (12) has same form as a cost function

with ordinary adaptive filters. In order to

minimize (20), let partial derivative with respect
to h to be zero. Then we get the Wiener

solution. Then it directly leads to the LMS
algorithm as follows:
h(n+1) =h(n)+ e (n)x(n) (19)

H. PROPOSED METHOD

As described earlier, to avoid the trivial solution
to minimization problem a proper condition must
be selected. In this section, a new approach is
proposed that is based on eigenvalue decom-
position. Indeed, the eigenvector corresponding to
the minimum eigenvalue of the covariance matrix
of the received signals contains the channel
impulse response. This approach is based on the
unit norm constraint that is apart from the linear

constraint inttoduced in the previous section.

1. Principle of the Proposed Algorithm
We assume that the channel is lincar and time
invariant within small time interval; therefore, we

have the following relation as described in (4)

x, (Wh, =xj (nh, 22)
where
X, (m) =[x (MA ,x,(n~L+D] .i=12 23)

and the channel impulse response vector of length
L are defined as

b, =k, by Ak, 1 i=12 (24)
This linear relation follows from (5). The
covariance matrix of the two received signals is
given by

R! =[Rxlxl Rmz}

Rx‘lxl RxeZ (25)
where Ruy=E[x{n)x/(n)], i, j=1,2
Consider the 2L X1 vector as follows:

(5]

-h, (26)

From (22) and (25), it can be seen that R:h=0
which means that the vector h is the eigenvector
of the covariance matrix R, corresponding to the
if the
impulse tesponse h, and h; have no common

cigenvalue 0. Moreover, two channel
zeros and the autccorrelation matrix of the source
signal s(n) is full rank, which is assumed in the
rest of this paper, the covariance matrix R, has
one and only one eigenvalue equal to zero.
Consider the noisy channel case as described in
(2) and let M=2. It follows from (1) that

L £
x*(mh=Y x(n—h(k)= Y x5 (n—k)hy (k)
k=0

k=0
L L
=Y viln =k ()= 3 vi (- K)hy (k)
k=0 k=0
=v(mh @n
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where x(n)=[x1’ x2' 1, v(=[v." va' |7

If the correlation matrix of the vector x is
denotes by R,, a direct of conclusion of (27) will
be

R, h=Ex(mx(m)" h=Ex(n)v(n)"
=E[v(mv(n)" Th=R h=c’h (28)

We note from (28) that h is the eigenvector of
the comelation matrix R, and ¢ is the
comresponding eigenvalue of R; The knowledge of
¢ 2 is not require in the practical case, but it can
be obtained as a by product if wanted

»_h’Rh

6 = —_—
" h'h 29)

2. Adaptive Implementation

In practice, it is saimple to estimate iteratively
the eigenvector corresponding to the minimum
eigenvalue of R, by using an algorithm similar
to the Frost algorithm that is a simple constrained
LMS algorithm[11]. In the following, we show
how to apply these techniques to out problem.
Minimizing the quantity h"R;h with respect to h
and subject to [hj*=h”h=1 will give uvs the
optimum weight he,.

Let us define the error signal

H
e(n) = h™ (n)x(n)
h(n)ll (30)

where x(n)=[x1T X’ ]T. Note that minimizing the
mean square value of e(n) is equivalent to
solving the above eigenvalue problem. Tzking the
graidient of e(n) with respect to h(n) gives

lFh{n) Nl

1 N h(n)
Ve(n)= ——(x(n) eln) Thin) ]

(3D

and we obtain the gradient-descent constrained
LMS algorithm

h(n+1)=h(n)—pe’ (n)Ve(n) (32)

where u, the adaptation step-size, is a positive
constant.
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Substituting (30} and (31) into (32) gives

1
h(ﬂ"'l)—h(ﬂ)—um'
H him} 2 hin)
X et P Theo (33)
and  taking  statistical = expectation  after

COonvergence, we get

h{e)
*h(eo) I

N 2, h(=2)
= Bl (34)

which is what is desired: the eigenvector h(ec)
corresponding to the smallest eigenvalue Efje(m)[]
of the covariance matrix R;. In practice, it is
advantageous to use the following adaptation
scheme

h(r) - pe” (m)Ve(n)

hin+1)= .
Ik(n) —e” (m)Ve(n)ll (35)

The algorithm (35) presented above is a little bit
complicated and is very general to find the
eigenvector comresponding to  the  smallest
eigenvalue of any matrix R, I the smallest
eigenvalue is equal to zero, which is the case

here, the algorithm can be simplified as follows:
e(my=h" (m)x(n) (36)

h(n)—pe’ (n)x(n)

Bt D = ) — e G 37

Note that this algorithm can be seen as an
approximation of the previous one by neglecting
the terms is ez(n), which is reasonable since the
smallest eigenvalue is equal to zero. In this
application, the two algorithms (35) and (37)
shoyld have the same performance  after
convergence even with low SNRs.

V. SIMULATION RESULTS

Computer  simulations were conducted to
evaluate the performance of the proposed
algorithm in comparison with existing algorithms.
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Table 1. Channel coefficienis for simulations. 0!
| -

Channel 1
i=1 i=2
(0} +0.7 -0.0326-370.0022
h(1) | +0.1657-70.0443 | +1,0259+3;0.0060
h(2) | +0.0333+70.0184 | +0.0145+70.0013
h(3) | +0.0152+30.0005 | -0.1020-70.0180
hi{(4) | +0.8451-50.0331 | +0.4411+30.0236
Channel 2
i=1 =2
RA0Q) | +0.2636-370.0113 -0.0276-30.0073
R{l) | -0.0186-30.0059 | +0.0350-30.0067
hi{2) | -0.0065+30.0039 | +0.0147+370.0020
(3} | +0.0236-30.0035 | +0.8760+30.0329
hi(4) | +0.7826-70.0113 | -0.2025-30.0015
hi(5) +0.0754-70.0090 -0.0225+370.0073
h(6) [ +0.0134+30.0010 | +0.0134-30.0023
(7Y | +#0.0042-3j0.0012 | +0.0042-370.0128

In all the simulations, two channel SIMO model
is assumed. This means two times oversampling
or two sensors at the receiver in real situation.
The input signal is 4-QAM. For simplicity of
comparison, we assumed that the channel order L
is known. The performance index is achieved by
examination the root mean square eror {RMSE)
that is defined as [5].

(13
Eéllhm—hllz

where N, is number of Monte Carlo trials, and

1
th?

(38)

h, is the estimate of the channels from the ith
trials. We used two different channels to test our
algorithm. The first one (denotes channel 1) has
order L=3 and
randomly, whereas the second channel {(denot s
2) length-16
empirically measured 7)2-spaced digital microwave
radio channel (M=2) with 230 taps, which we
truncated to obtain a channel with L=7. The
microwave channel chanl.mat is founded in [13]

the coefficients were chosen

channel is a version of an

The shortened version is derived by linear
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Fig. 3 RMSE comparison of the proposed and existing
algorithms for channel 1 under SNR=30dB, 204B,
and 10dB,

decimation of the FFT of the full-length
T]2-spaced impulse response and taking the IFFT
of the decimated version (see [12] for more
details on this channel). The channel coefficients
for both sets of channels are listed in Table 1. A
total number of 50 independent trials
performed. All algorithms were initiated at h(0) =
{1, 0, ~+, 0, 1, O, -, 0]" with the step size,
=0.01,

were

1221



FZEAI%3=5A] 019 Vol.26 NoSB
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Fig. 4 RMSE comparison of the proposed and existing
algorithms for channel 2, under SNR=30dB,
20dB, and 10dB.

Fig. 3 and Fig. 4 show the RMSE of the
channel estimates from existing algorithms and the
proposed algorithm for channel 1 and channel 2,
respectively. From this figures, we can see that
the proposed algorithm always performs betier
than others because we use the unit norm
constraint for weight update. But previous
algorithms are assuming that linear constraint
which is needed gain control. The proposed
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Fig. 5 The estimated and the magnitude of the channel
1 under SNR=20dB, (a) real part estimation, (b)
imaginary part estimation, and (c) magnitade of
the estimation at 50 trials.

algorithm converges very fast to a good channel
estimate. Moreover, it is very robust to noise
even with an SNR=10dB. By inspection, we can
observe that RMSE values of the proposed
method are decreased more or less 8-14dB,
6-10dB, and 1-2dB under SNR=30dB, 20dB, and
10dB, respectively, on both channel 1 and channel
2. From Fig. 5 to Fig. 8, figures show the 50
estimates of the channel and the magnitude for
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Fig. 6 The estimated and the magnitude of the channel
1 under SNR=10dB, (a) real part estimation, {b)
imaginary part estimation, and (c) magnitude of
the estimation at 50 iials.

channel 1 and channel 2 under SNR=20dB and
1B, In all figures, solid line denotes the
original channel, dotted line denotes the averaged
estimates +standard deviation, and the square
symbol represents the mean value of the 50
estimates. Clearly, we can observe the significant
improvement of the proposed algorithm over
existing algorithms for both random and
real-measured channel.

Imaginary

Magnitude

Tap

Fig. 7 The estimated and the magnitude of the chamnel
2 under SNR=20dB, (a) real part estimation, (b)
imaginary part estimation, and (c) magnitude of
the estimation at 50 trials.

V. CONCLUSION

In this paper, a new and simple approach to
adaptive blind channel identification has been
presented. The method is based on adaptive
cigenvalue  decomposition.  The  eigenvector
corresponding to the minimum eigenvalue of the
covariance matrix of the received signals contains
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3 6 g 12 s

0.04 -

Imaginary
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Fig. 8 The estimated and the magnitude of the channel
2 under SNR=10dB, (a} real part estimation, (b)
imaginary part estimation, and (¢} magnitude of
the estimation at 50 trials.

the channel impulse response. And we use a
simple constrained LMS algorithm to estimate
iteratively the eigenvector corresponding to the
minimum  ecigenvalue. Simulation results have
demonstrated the performance improvement of the
proposed algorithm. In comparison with other
algorithms, the proposed one seems to be more
efficient in a low SNR channel and much more
accurate. Our future works include the extension

1224

to blind multi-input multi-output (MIMO) channel
identification and the development of the
constrained RLS algorithm for fast convergence.
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