References
- Math. Comp. v.36 Superconvrgence of a finite element approximation to the solution of Soblev equation in a single space variable D.N.Arnold;J.Douglas,Jr.;V.Thomee
- Proc. Sys. Sci. and Sys. Eng. A rectangle test for finite element analysis(a aurvey) Z.Q.Lin
- Proc. Sys. Sci. and Sys. Eng. A rectangle test for inteplated finite elements Z.Q.Lin;N.N.Yanag;A.H.Zhou
- The preprocessing and postprocessing to finite element method Q.Lin;Q.D.Zhu
- dept. of Pure and Applied Math. A priori L² eror estimates for Galerkin methods for nonlinear Sobolev equations Y.P.Lin
- SIAM J. Numer. Anal. v.27 A Ritz-Volterra projection to finite-element spaces and approximations to integro-differential and related equations Y.P.Lin;V.Thomee;L.B.Wthlbin
- J. Integral Equations Appl. v.8 On superconvergence results and negative norm for parabolic integro-differetial equations A.K.Pani;R.K.Sinha
- Lecture Notes in Mathematics Superconvergence in Galerkin finite element methods L.B.Wahlbin
- Numer. Math. J. Chinese Univ. v.12 On stability and application of the non-classical elliptic projection T.Zhang;Y.P.Lin
-
Numer. Math. Sinica
v.12
$L^{\infty}$ -error bound for some linear integrodifferential equations by finite element approximations T.Zhang;Y.P.Lin