TWO ORDER SUPERCONVERGENCE OF FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS

  • Li, Qian (Department of Mathematics Shandong Normal University Jinan) ;
  • Wei, Hong (Institute of Mathematics, Chese Academy of Sciences)
  • Published : 2001.09.01

Abstract

We consider finite element methods applied to a class of Sobolev equations in $R^d$($d{\geq}1$). Global strong superconvergence, which only requires that partitions are quais-uniform, is investigated for the error between the approximate solution and the Ritz-Sobolev projection of the exact solution. Two order superconvervgence results are demonstrated in $W^{1,p}({\Omega})$ and $L_p({\Omega})$ for $2{\leq}p$${\infty}$.

Keywords

References

  1. Math. Comp. v.36 Superconvrgence of a finite element approximation to the solution of Soblev equation in a single space variable D.N.Arnold;J.Douglas,Jr.;V.Thomee
  2. Proc. Sys. Sci. and Sys. Eng. A rectangle test for finite element analysis(a aurvey) Z.Q.Lin
  3. Proc. Sys. Sci. and Sys. Eng. A rectangle test for inteplated finite elements Z.Q.Lin;N.N.Yanag;A.H.Zhou
  4. The preprocessing and postprocessing to finite element method Q.Lin;Q.D.Zhu
  5. dept. of Pure and Applied Math. A priori L² eror estimates for Galerkin methods for nonlinear Sobolev equations Y.P.Lin
  6. SIAM J. Numer. Anal. v.27 A Ritz-Volterra projection to finite-element spaces and approximations to integro-differential and related equations Y.P.Lin;V.Thomee;L.B.Wthlbin
  7. J. Integral Equations Appl. v.8 On superconvergence results and negative norm for parabolic integro-differetial equations A.K.Pani;R.K.Sinha
  8. Lecture Notes in Mathematics Superconvergence in Galerkin finite element methods L.B.Wahlbin
  9. Numer. Math. J. Chinese Univ. v.12 On stability and application of the non-classical elliptic projection T.Zhang;Y.P.Lin
  10. Numer. Math. Sinica v.12 $L^{\infty}$ -error bound for some linear integrodifferential equations by finite element approximations T.Zhang;Y.P.Lin