LOCAL STABILITY OF CAUCHY FUNCTIONAL EQUATION

  • 발행 : 2001.05.01

초록

In this paper we prove a local stability of Gavruta’s theorem for the generalized Hyers-Ulam-Rassias Stability of Cauchy functional equation.

키워드

참고문헌

  1. Illinois J. Math. v.39 Approximate version of Cauchy's Functional equation R.Alexander;C.E.Blair;L.A.Rubel
  2. J. Funct. Anal. v.14 Fixed points of asymptotically linear maps in ordered Banach spaces H.Amann
  3. SIAM Review v.18 Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces H.Amann
  4. J. Math. Anal. Appl. v.71 Fixed point theorems for mappings in oredered Banach spaces N.P.Cac;J.A.Gatica
  5. Stability of mappings of Hyers-Ulam Type On the stability of the generalized orthogonality equation J.Chmielinski;Th.M.Rassias(ed.);J.Tabor(ed.)
  6. Advances in Math v.51 Cauchy's functional equation in the mean P.D.T.A.Elliott
  7. General Inequalities 6;Internat. Ser. Numer. Math. v.103 On functional inequalities stemming from stability questions R.Ger;W.Walter(ed.)
  8. Bull. Polish Acad. Sci. Math. v.43 Stability of the orthogonal additivity R.Ger;J.Sikorska
  9. Proc. Nat. Acad. Sci. U. S. A v.27 On the stability of the linear functional equation D.H.Hyers
  10. Aeqnat. Math. v.44 Approximate homomorphisms D.H.Hyers;Th.M.Rassias
  11. Colloq.Math. v.46 Operateurs asymptotiquement lineaires sur des espaces localement convexes G.Isac.
  12. J. Approx. Theory v.72 On the Hyers-Ulam stability of ${\psi}$ -additive mappings G.Isac;Th.M.Rassias
  13. Intern. J. Math. Math. Sciences v.19 Stability of ${\psi}$ -additive mapprings: Applications to nonlinear analysis G.Isc;Th.M.Rassias
  14. Noordhoff Groningen Positive Solutions of Operator Equations M.A.Krasnoselskii
  15. Proc. Amer. Math. Soc. v.72 On the stability of the linear mapping in Banach spaces Th.M.Rassias
  16. J. Math. Anal. Appl. v.173 On the Hyers-Ulam stability of linear mappings Th.M.Rassias;P.Semrl
  17. Atti. Accad. Sc. Torino v.117 Sull' apprrossimazione delle appricazioni localmente ${\delta}$ -additive F.Skof
  18. In; Stability of Mapping of Hyers-Ulam type On the stability of functional equations on a restrited domain and ralated topic F. Skof;Th. M. Raissas;J. Tabor(eds.)
  19. Stability of Mapping of Hyers­Ulam type On the stability of functional equations on a restricted domain and a related topic F.Skof;Th.M.Rassias(ed.);J.Tabor(ed.)