참고문헌
- SIAM J. Sci. Stat. Comput. v.9 A local refinement finite element method for two dimensional parabolic systems S.Adjerid;J.F.Flaherty
- Numer. Math. v.73 The influence and selection of subspaces for aposteriori estimators M.Ainsworth
-
SIAM J. Numer. Anal.
v.36
Reliable and robust a posteriori error estimation for singularly perturbed reaction diffusion problems
M.Ainsworth;I.Babu
$\v{s}$ ka - Numer. Math. v.65 A unified approach to a posteriori error estimation based on element residual methods M.Ainsworth;J.T.Oden
- A Posteriori Error Estimation in Finite Element Analysis A Posteriori Error Estimation in Finite Element analysis M.Ainsworth;J.T.Oden
- SIAM J. Numenr. Anal. v.34 A posteriori error estimates for Stokes' and Ossen's equations M.Ainsworth;J.T.Oden
-
SIAM J. Numer. Anal
v.29
Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements
I.Babu
$\v{s}$ ka;R.Dur$\'{a}$ n;R.Rodriuez -
Comput. Methods Appl. Mech. Engrg.
v.61
A feedback finite element methods with a posteriori error estimation: Part 1. The finite element method and some basic properties of the a posteriori error estimator
I.Babu
$\v{s}$ ka;A.D.Miller -
SIAM J. Numer. Anal.
v.18
Error estimates for adaptive finite element computations
I.Babu
$\v{s}$ ka;W.C.Rheinboldt -
Int. J. Numer. Methods Engrg.
v.12
A posteriori error estimates for the finite element methods
I.Babu
$\v{s}$ ka;W.C.Rheinboldt -
The Finite Element Method and its Reliability
I.Babu
$\v{s}$ ka;T.Strouboulis -
Comput. Methods Appl. Mech. Engrg.
v.114
A model study of the quality of a posteriori error estimators for linear eliptic problems. Error estimation in the interior of patchwise uniform grids of triangles
I.Babu
$\v{s}$ ka;T.Strouboulis;C.S.Upadhyay -
Int. J. Numer. Methods Engrg.
v.40
A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems with particular reference to the behavior near the boundary
I.Babu
$\v{s}$ ka;T.Strouboulis;C.S.Upadhyay -
Finite Element in Analysis and Design
v.3
Asymptotically exact a posteriori error estimator for biquadratic elements
I.Babu
$\v{s}$ ka;D.Yu - Acta Numerica v.5 Hierachical bases and the finite element method R.Bank
- SIAM J. Numer. Anal. v.30 A posteriori error estimates based on hierarchical bases R.Bank;K.Smith
- Math. Comput. v.44 Some a posteriori error estimators for elliptic partial differential equations R.Bank;A.Weiser
- SIAM J. Numer. Anal. A posteriori error estimators for the Raviart-Thomas element D.Braess;R.Verfurth
- SIAM J. Numer. Anal. v.36 Edge residual dominate a posteriori error estimates for low order finite element method C.Carstensen;R.Verfurth
- High Accuracy Theory of Finite Element Methods(in Chinese) C.Chen;Y.Huang
- Numer. Math. v.84 Residual type a posteriori error estimates for eliptic obstacle problems Z.M.Chen;R.H.Nochetto
- Comput. Methods Appl. Mech. Engrg. v.189 A characteristic Galerkin method with adaptive error control for the continuous casting problem Z.M.Chen;R.H.Nochetto;A.Schmidt
- RAIRO Anal. Numer. v.2 Approximation by finite element functions using local regularization P.Clement
- SIAM J. Numer Anla. v.33 A convergent adaptive algorithm for Poisson's equation W.Dorfler
- Small data oscillation implies the saturation assumption W.Dorfler;R.H.Nochetto
-
Numer. Math.
v.59
On the asymptotic exactness of the error estimators for linear triangular elements
R.Dur
$\'{a}$ n;M.A.Muschietti;R.Rodr$\'{i}$ guez -
Math. Models Methods appl. Sci.
v.9
A posteriori error estimators for mixed approximations of eigenvalue problems
R.Dur
$\'{a}$ n;L.Gastaldi;C.Padra -
Numer. Math.
v.62
On the asymptotic exactness of Bank-Weiser's estimator
R.Dur
$\'{a}$ n;R.Rodr$\'{i}$ guez - Acta Numerica v.4 Introduction to adoptive methods for differential equations K.Eriksson;D.Estep;P.Hansbo;C.Johnson
- SIAM J. Numer. Anal. v.28 Adaptive finite element methods for parabolic problems, Part 1: A linear model problem K.Eriksson;C.Johnson
- Math. Comp. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes, Part 1: A smooth problem and globally quasi-uniform meshes W.Hoffmann;A.H.Schatz;L.B.Wahlbin;G.Wittum
- Comput. Methods Appl. Mech. Engrg. v.101 Adaptive finite elment methods in computational mechanics C.Johnson;P.Hansbo
- Lectures Notes in Pure and Applied Mathematics 196 Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates M.Krizek;P.Neitaanmaki;R.Stenberg(eds.)
- Numer. Methods for PDEs v.15 Analysis of a class of superconvergence patch recovery techniques for linear and biliner finite elements B;Li;Z.Zhang
- Construction and Analysis of High effifient Finite Elements (in Chinese) Q.Lin;N.Yan
- J. of Comput. and Appl. Math. v.120 A posteriori error estimates for some medel boundary control problems W.Liu;N.Yan
- Numer. Math. Quasi-norm a priori and a posteriori error estimates for nonconforming approximation of P-Laplacian W;Liu;N.Yan
- Math. Comp. v.64 Pointwise a posteriori error estimates for eliptic problems on highly graded meshes R.H.Nochetto
- Comm. Pure Appl. Math. v.53 A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations R.H.Nochetto;G.Savar;C.Verdi
- Comput. Methods Appl. Mech. Engrg. v.77 Toward a universal hp adaptive finite element strategy, Part 2: A posteriori erreor estimation J.T.Oden;L.Demkowicz;W.Rachowicz;T.A.Westermann
- Comput. Methods Appl. Mech. Engrg. v.176 A posteriori error estimation and mesh adaptation for finite element models on elasto-plasticity R.Rannacher;F.T.Suttmeier
- Int. J. Numer. Meth. PDEs. v.10 Some remarks on Zienkiewicz-Zhu estimator R.Rodriguez
- Math. Comp. v.54 Finite element interpolation of non-smooth functions satisfying boundary conditions L.R.Scott;S.Zhang
- A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques R.Verfurth
- Numer. Math. v.78 Robust a posteriori error estimators for a singularly perturbed reaction diffusion equation R.Verfurth
- Numer. Math. v.80 A posteriori error estimators for convection-diffusion equations R.Verfurth
- Lecture Notes in Mathematics v.1605 Superconvergence in Galerkin Finite Element Methods L.B.Wahlbin
- Int. J. Numer. Mech. Eng. v.36 Patch recovery based on superconvergent derivatives and equilibrium N.E.Wiberg;F.Abdulwahab
- Math. Comp. v.69 Local and parallel finite element algorithms absed on two-grid discretizations J.Xu;A.Zhou
- Comput. Methods Appl. Mech. Engrg. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes N.Yan;A.Zhou
- Math. Comp. v.69 Ultraconvergence of the patch recovery technique (Ⅱ) Z.Zhang
- Numer. Methods for PDEs v.12 Mathematical analysis of Zienkieuncz-Zhu's derivative patch recovery technique for quadrilateral finite elements Z.Zhang;H.D.Victory,Jr.
- Comput. Methods Appl. Mech. Engrg. v.123 Analysis of the superconvergent patch recovery technique and a posteriori error estimator in finite element method(Ⅰ) Z.Zhang;J.Z.Zhu
- Comput. Methods Appl. Mech. Engrg. v.150 A posteriori error estimation-the relationship between different procedures J.Z.Zhu
- Comput. Methods Appl. Mech. Engrg. v.176 The relationship of some a posteriori error estimators J.Z.Zhu;Z.Zhang
- Int. J. Numer. Methods Engrg. v.24 A simple error estimator and adaptive procedure for practical engineering analysis O.C.Zienkiewicz;J.Z.Zhu
- Int. J. Numer. Methods Engrg. v.33 The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique O.C.Zienkiewicz;J.Z.Zhu
- Int. J. Numer. Methods Engrg. v.33 The superconvergent patch recovery and a posteriori error estimates, Part 2: Error estimaties and adaptivity O.C.Zienkiewicz;J.Z.Zhu
- Comput. Methods Appl. Mech. Engrg. v.101 The superconvergence patch recovery (SPR) and adaptive finite element refinement O.C.Zienkiewicz;J.Z.Zhu