RECOVERY TYPE A POSTERIORI ERROR ESTIMATES IN FINITE ELEMENT METHODS

  • Zhang, Zhimin (Department of Mathematics, Wayne State University) ;
  • Yan, Ningning (The Institute of System Sciences, Academy of Mathematics and System Sciences, Chinese Academy of Sciences)
  • 발행 : 2001.05.01

초록

This is a survey article on finite element a posteriori error estimates with an emphasize on gradient recovery type error estimators. As an example, the error estimator based on the ZZ patch recovery technique will be discussed in some detail.

키워드

참고문헌

  1. SIAM J. Sci. Stat. Comput. v.9 A local refinement finite element method for two dimensional parabolic systems S.Adjerid;J.F.Flaherty
  2. Numer. Math. v.73 The influence and selection of subspaces for a­posteriori estimators M.Ainsworth
  3. SIAM J. Numer. Anal. v.36 Reliable and robust a posteriori error estimation for singularly perturbed reaction diffusion problems M.Ainsworth;I.Babu$\v{s}$ka
  4. Numer. Math. v.65 A unified approach to a posteriori error estimation based on element residual methods M.Ainsworth;J.T.Oden
  5. A Posteriori Error Estimation in Finite Element Analysis A Posteriori Error Estimation in Finite Element analysis M.Ainsworth;J.T.Oden
  6. SIAM J. Numenr. Anal. v.34 A posteriori error estimates for Stokes' and Ossen's equations M.Ainsworth;J.T.Oden
  7. SIAM J. Numer. Anal v.29 Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements I.Babu$\v{s}$ka;R.Dur$\'{a}$n;R.Rodriuez
  8. Comput. Methods Appl. Mech. Engrg. v.61 A feedback finite element methods with a posteriori error estimation: Part 1. The finite element method and some basic properties of the a posteriori error estimator I.Babu$\v{s}$ka;A.D.Miller
  9. SIAM J. Numer. Anal. v.18 Error estimates for adaptive finite element computations I.Babu$\v{s}$ka;W.C.Rheinboldt
  10. Int. J. Numer. Methods Engrg. v.12 A posteriori error estimates for the finite element methods I.Babu$\v{s}$ka;W.C.Rheinboldt
  11. The Finite Element Method and its Reliability I.Babu$\v{s}$ka;T.Strouboulis
  12. Comput. Methods Appl. Mech. Engrg. v.114 A model study of the quality of a posteriori error estimators for linear eliptic problems. Error estimation in the interior of patchwise uniform grids of triangles I.Babu$\v{s}$ka;T.Strouboulis;C.S.Upadhyay
  13. Int. J. Numer. Methods Engrg. v.40 A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems with particular reference to the behavior near the boundary I.Babu$\v{s}$ka;T.Strouboulis;C.S.Upadhyay
  14. Finite Element in Analysis and Design v.3 Asymptotically exact a posteriori error estimator for biquadratic elements I.Babu$\v{s}$ka;D.Yu
  15. Acta Numerica v.5 Hierachical bases and the finite element method R.Bank
  16. SIAM J. Numer. Anal. v.30 A posteriori error estimates based on hierarchical bases R.Bank;K.Smith
  17. Math. Comput. v.44 Some a posteriori error estimators for elliptic partial differential equations R.Bank;A.Weiser
  18. SIAM J. Numer. Anal. A posteriori error estimators for the Raviart-Thomas element D.Braess;R.Verfurth
  19. SIAM J. Numer. Anal. v.36 Edge residual dominate a posteriori error estimates for low order finite element method C.Carstensen;R.Verfurth
  20. High Accuracy Theory of Finite Element Methods(in Chinese) C.Chen;Y.Huang
  21. Numer. Math. v.84 Residual type a posteriori error estimates for eliptic obstacle problems Z.M.Chen;R.H.Nochetto
  22. Comput. Methods Appl. Mech. Engrg. v.189 A characteristic Galerkin method with adaptive error control for the continuous casting problem Z.M.Chen;R.H.Nochetto;A.Schmidt
  23. RAIRO Anal. Numer. v.2 Approximation by finite element functions using local regularization P.Clement
  24. SIAM J. Numer Anla. v.33 A convergent adaptive algorithm for Poisson's equation W.Dorfler
  25. Small data oscillation implies the saturation assumption W.Dorfler;R.H.Nochetto
  26. Numer. Math. v.59 On the asymptotic exactness of the error estimators for linear triangular elements R.Dur$\'{a}$n;M.A.Muschietti;R.Rodr$\'{i}$guez
  27. Math. Models Methods appl. Sci. v.9 A posteriori error estimators for mixed approximations of eigenvalue problems R.Dur$\'{a}$n;L.Gastaldi;C.Padra
  28. Numer. Math. v.62 On the asymptotic exactness of Bank-Weiser's estimator R.Dur$\'{a}$n;R.Rodr$\'{i}$guez
  29. Acta Numerica v.4 Introduction to adoptive methods for differential equations K.Eriksson;D.Estep;P.Hansbo;C.Johnson
  30. SIAM J. Numer. Anal. v.28 Adaptive finite element methods for parabolic problems, Part 1: A linear model problem K.Eriksson;C.Johnson
  31. Math. Comp. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes, Part 1: A smooth problem and globally quasi-uniform meshes W.Hoffmann;A.H.Schatz;L.B.Wahlbin;G.Wittum
  32. Comput. Methods Appl. Mech. Engrg. v.101 Adaptive finite elment methods in computational mechanics C.Johnson;P.Hansbo
  33. Lectures Notes in Pure and Applied Mathematics 196 Finite Element Methods: Super­convergence, Post­processing, and A Posteriori Estimates M.Krizek;P.Neitaanmaki;R.Stenberg(eds.)
  34. Numer. Methods for PDEs v.15 Analysis of a class of superconvergence patch recovery techniques for linear and biliner finite elements B;Li;Z.Zhang
  35. Construction and Analysis of High effifient Finite Elements (in Chinese) Q.Lin;N.Yan
  36. J. of Comput. and Appl. Math. v.120 A posteriori error estimates for some medel boundary control problems W.Liu;N.Yan
  37. Numer. Math. Quasi-norm a priori and a posteriori error estimates for nonconforming approximation of P-Laplacian W;Liu;N.Yan
  38. Math. Comp. v.64 Pointwise a posteriori error estimates for eliptic problems on highly graded meshes R.H.Nochetto
  39. Comm. Pure Appl. Math. v.53 A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations R.H.Nochetto;G.Savar;C.Verdi
  40. Comput. Methods Appl. Mech. Engrg. v.77 Toward a universal h­p adaptive finite element strategy, Part 2: A posteriori erreor estimation J.T.Oden;L.Demkowicz;W.Rachowicz;T.A.Westermann
  41. Comput. Methods Appl. Mech. Engrg. v.176 A posteriori error estimation and mesh adaptation for finite element models on elasto-plasticity R.Rannacher;F.T.Suttmeier
  42. Int. J. Numer. Meth. PDEs. v.10 Some remarks on Zienkiewicz-Zhu estimator R.Rodriguez
  43. Math. Comp. v.54 Finite element interpolation of non-smooth functions satisfying boundary conditions L.R.Scott;S.Zhang
  44. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques R.Verfurth
  45. Numer. Math. v.78 Robust a posteriori error estimators for a singularly perturbed reaction diffusion equation R.Verfurth
  46. Numer. Math. v.80 A posteriori error estimators for convection-diffusion equations R.Verfurth
  47. Lecture Notes in Mathematics v.1605 Superconvergence in Galerkin Finite Element Methods L.B.Wahlbin
  48. Int. J. Numer. Mech. Eng. v.36 Patch recovery based on superconvergent derivatives and equilibrium N.E.Wiberg;F.Abdulwahab
  49. Math. Comp. v.69 Local and parallel finite element algorithms absed on two-grid discretizations J.Xu;A.Zhou
  50. Comput. Methods Appl. Mech. Engrg. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes N.Yan;A.Zhou
  51. Math. Comp. v.69 Ultraconvergence of the patch recovery technique (Ⅱ) Z.Zhang
  52. Numer. Methods for PDEs v.12 Mathematical analysis of Zienkieuncz-Zhu's derivative patch recovery technique for quadrilateral finite elements Z.Zhang;H.D.Victory,Jr.
  53. Comput. Methods Appl. Mech. Engrg. v.123 Analysis of the superconvergent patch recovery technique and a posteriori error estimator in finite element method(Ⅰ) Z.Zhang;J.Z.Zhu
  54. Comput. Methods Appl. Mech. Engrg. v.150 A posteriori error estimation-the relationship between different procedures J.Z.Zhu
  55. Comput. Methods Appl. Mech. Engrg. v.176 The relationship of some a posteriori error estimators J.Z.Zhu;Z.Zhang
  56. Int. J. Numer. Methods Engrg. v.24 A simple error estimator and adaptive procedure for practical engineering analysis O.C.Zienkiewicz;J.Z.Zhu
  57. Int. J. Numer. Methods Engrg. v.33 The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique O.C.Zienkiewicz;J.Z.Zhu
  58. Int. J. Numer. Methods Engrg. v.33 The superconvergent patch recovery and a posteriori error estimates, Part 2: Error estimaties and adaptivity O.C.Zienkiewicz;J.Z.Zhu
  59. Comput. Methods Appl. Mech. Engrg. v.101 The superconvergence patch recovery (SPR) and adaptive finite element refinement O.C.Zienkiewicz;J.Z.Zhu