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Local Sensitivity Analysis using Divergence Measures
under Weighted Distribution

Younshik Chung' and Dipak K.Dey?

ABSTRACT

This paper considers the use of local ¢-divergence measures between
posterior distributions under classes of perturbations in order to investigate
the inherent robustness of certain classes. The smaller value of the limiting
local p-divergence implies more robustness for the prior or the likelihood.
We consider the cases when the likilihood comes from the class of weighted
distribution. T'wo kinds of perturbations are considered for the local sensi-
tivity analysis. In addition, some numerical examples are considered which
provide measures of robustness.

Keywords: Local sensitivity, Bayesian robustness, Perturbation, ¢-divergence,
t-distribution, Gamma distribution, Weibull distribution, Weighted distribution.

1. Introduction

There are many situations where the usual random sample from a population
of interest is not available, due to the data having unequal probabilities of entering
the sample. Even if a random sample can be obtained, the experimenter may
choose not to use it, since a carefully chosen bias sample may turn out to be more
informative (e.g. Bayarri and DeGroot, 1992). The class of weighted distributions
models this ascertainment bias by adjusting the probabilities of actual occurrence
of events to arrive at a specification of the probabilities of the events as observed
and recorded. ‘

Suppose the random variable (or random vector) X is distributed as f(z|8),
and we are interested in performing inferences on 6. Suppose, further, that
the probability that an observation z enters the sample gets multiplied by some
nonnegative weight function w(z). Then the observed sample is a random sample
from the weighted distribution

fo(z ) 0) = UL L.1)
Ep{w(X)}
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where Eg{w(X)} = [w(z)f(z | 8)dz. Such a random sample is termed a
weighted sample. Rao(1965) first unifies the concept of weighted distribution.
Since model specification is crucial in data analysis, it is important to account
for possible bias in the sample by assigning a weight function w(z) which spec-
ifies in a natural way the probability of recording X = z. Hedges and Olkin
(1985) discuss how to incorporate a known weight function into a fixed-effects
model for a meta analysis. In the same context, Iyengar and Greenhouse(1988)
extend this approach by considering for maximum likelihood estimation of weight
function. Bayarri and DeGroot (1992) suggest several applications of weighted
distributions. Larose and Dey (1996) study weighted distributions in the context
of model selection in a Bayesian frame work whereas Bayarri and Berger(1998)
consider robustness issues for the weight function. Also, Silliman(1997) performs
Bayesian estimation of weight function in the context of a hierarchical random-
effects model. Recently, Chung, Dey and Jang(2000) consider the semiparametric
hierarchical selection model using the weight function.

A Bayesian analysis depends strongly on the modeling assumptions which
make use of both prior and likelihood. Even after fitting a standard statistical
model to a given set of data, one does not feel comportable unless some sensitivity
checks are made for model adequacy. One way to measure the sensitivity of the
present model is to perturb the base model to potentially conceivable direction
to determine the effect of such alterations on the analysis. Often it is difficult
to specify or elicit a method that would yield a convincing prior. The situation
becomes more difficult for high dimensional parameters. Thus, to perform a
complete Bayesian analysis, one must use some sensitivity measures to check
model adequacy. Notable references are due to Berger (1984, 1985, 1990) and
the references contained therein. Thus, the sensitivity analysis or the robustness
issues in Bayesian inference can be classified into two broad categories, global
and local sensitivity. In global analysis one considers a class of reasonable priors
and studies the variations of several posterior features. See Berger (1990), Basu
and DasGupta (1992) and Sivaganesan (1993). Alternatively, in local analysis
the effects of minor perturbations around some elicited priors are studied: see
Ruggeri and Wasserman(1993), Gustafson (1994) and Dey, Ghosh and Lou(1996).

The major advantage of local sensitivity analysis is realized particularly in
multivariate problems, where the global analysis is too time consuming and often
analytically intractable. In Bayesian robustness analysis, some researchers have
used a general ¢-divergence measure as defined by Csiszar (1967) to measure
the variation between two posterior distributions. In Dey and Birmiwal(1994),
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the posterior robustness is measured using (- divergence where the variation
of posterior distribution is studied for fixed likelihood. Delampady and Dey
(1994) consider the variation of the local curvatures of the ¢- divergence between
posteriors when the prior varies within mixtures of symetric and unimodal classes.

In this paper we consider the effect of perturbation of the standard model
within a parametric family. This type of perturbations are natural when graphical
or other statistical procedures indicate the possibility that the standard model
may only be marginally adequate. Following Geisser(1993), we consider three
different classes of pertubations. The class of ¢-distributions with varying degrees
of freedom is useful for the robustness study of the location parameter problem,
whereas the class of gamma distributions or Weibull distributions with varying .
the shape parameter or varying the scale parameter is useful for the robustness
study of the scale family or of the shape family. We develop results using the
limiting local divergence between the posterior distributions under an elicited
prior and its perturbations under classes of perturbations of distributions families
to study the local sensitivity of the posterior distributions.

An outline of this paper is as follows: In section 2, we define the ¢-divergence
and develop related notations. In section 3, we obtain the results of the limiting
local p-divergences between two posterior weighted distributions under a class of
t-distribution or of gamma distributions or of Weibull distributions, which can
be used as a measure of the local robustness. Finally, section 4 contains four
examples to demonstrate the results obtained in section 3.

2. Definitions and Notations

Suppose = denotes the observable random variable with density f(z|6) where
6 an unknown parameter. Once a proper prior 7(6) is specified, then the marginal
density of X corresponding to f and 7 is defined as

m(z) = /f(x[9)7r(9)d9
and its posterior density of & given z corresponding to f and 7 is defined as

7 (2l6)m(6)

w(0|z) = (@)

In weighted distribution problem, a realization z of X under f(z|#) enters the
investigator's record with probability proportional to a weight function w(z).
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Clearly, the recorded z is not an observation on X, but on the random variable
X", say, having the probability density function(pdf)

w(z)f(x]9)
Fe(alp) = 0D,
= B
where Eyw = [w(z)f(z|0)dz is the normalizing constant. The random

variable X% is called the Welghted version of X and its distributions in relation
to that of X is called the weighted distribution with weight function w(z).
In addition, the marginal density of X™ corresponding to f* and 7 is defined

¥(g) = / 1% (x]6)m(6)do

and its posterior density of 6 given z corresponding to f* and 7 is defined as

_ o)

'n'w(elx) - 'm“’(m)

as

Following Csiszar(1967), we define the general p-divergence between any two
posterior distrubutions 7 (#|z) and ws(0|x) as

Dy = Dy{ms(Ola), w(0ke)} = [ m6le)o(Z=)as 21)

where ¢ is assumed to be a convex function with a bounded third derivative.

There are several well-known ¢-divergence measures. For example, p(z) =
In(z) defines the Kullback-Leibler divergences, o(z) = (/z — 1)? gives Hellinger
distance, ¢(z) = (z—1)? defines the chi-square divergence, p(z) = |z —1| defines
the variational distance of L1 norm and ¢(z) = (z°—1)/A(A+1), A # 0, —1 defines
the power weighted divergence as studied extensively in the context of goodness
of fit test in Reid and Cressie (1988).

From (2.1), by Taylor expansion on ¢-function, the general (-divergences
between two posterior weighted distributions 7§ (6|z) and 7§ (f|z) becomes

g (6]7)
75 (012)

DY = / o do (2.2)

= (p(1)+£“§(1—)(5_50)2/7r50(9|m) [856(:;50%!‘%;)} d6 + O((5 — 60)*)

= )+ EW 60)* By 01o)1 [ (%(7{5 ((g\[a; )
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where § is a perturbation of the likelihood or prior which results to the poste-
rior distribution 7% (|x), & is known, O((6 — 8)) is the remainder term with
order 3 or higher. We further assume that the differentiation with respect to §
and integration with respect to 6 of the posterior p.d.f. and its derivatives are
interchangeable. Note that since for all n,

o" [y (01X) s Olz) ) _
[ o055 <_%WX—)> dh = [ 6la) =0

therefore the term (6 — dp)y f LA (0)z) L pood (—%) d@ is vanished.

From (2.2), let us now define the limiting local ¢-divergence between two
posterior weighted distributions 73’ (|z) and 7§ (6|z) as

! ‘ ¥ (0|z
b g PF =] = Jin g {/ wE 00 G - W}
1" 1 ) a 7-('11) 9
= ‘Pz( ) Jli,rfslo Ewguo‘(alw) {%(W%}((Qﬁ)) )] (2.3)

3. Weighted Distribution Families

3.1. Perturbation of Likelihood

In this section, we will only invesigate the local sensitivity measures for the
perturbation of likelihood within distribution families in weighted distributions.
We consider a fixed prior 7(#) and perturb the weighted likelihood within a
distribution family of the form

F(616) = s (el

where w(z) is the fixed weight function and f,(x|0) is the unweighted distribu-
tions which could be t-distribution, gamma distribution or Weibull distribution
as follows:

First, we fix the prior distribution n(#), and perturb the likelihood function
f¥(z|6) from the unweighted distribution f,(z|¢) which is a member of the class
of t-distributions of the form

P G o I PO A |
el = [1+ } el (3.1)

(el
—
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where o2 is known. In this case, it is well known that when the degree of freedom
r goes to infinity, the unweighted likelihood goes to the normal distribution. Thus
varying r from 1 to oo, we can generate a class of likelihood functions.

Second, we fix the prior distribution 7(#) and perturb the likelihood function
¥ (z|0) from the unweighted distribution f,.(z|6) which is a member of the class
of gamma distributions of the form

T
£(z]0) = FH(T) S 31 650, (3.2)

In this case, it is well known that when the shape parameter r goes to 1, the

unweighted likelihood goes to the exponential distribution with unknown scale
paramter §. Thus varying r from 1 to co, we can generate a class of likelihood

functions.

Finally, we fix the prior distribution (), and perturb the likelihood function
¥ (x|6) from the unweighted distribution f,(z|@) which is a member of the class
of Weibull distribution of the form

fr(z]0) = rﬂma_le_me, r>1. (3.3)

In this case, when the scale parameter r varies from 1 to oo, we can generate a
class of likelihood functions.

Note that for each case, r denotes the perturbation of the likelihood function.
From now on, we use r as the perturbation instead of § for notational simplicity.
Then for each case, f(z|0) can be written as

w(z)hs(r)
Y (z]8) = ——L— 3.4
1+ ﬁz—;g%ﬁ]_%—_l, for t-distibution
where hg(r) = { g7 le 02, for gamma, distribution
:Ea“le_me, for Weibull distribution.
Note that %ﬂ can be expressed as
Ohg(r
D) (et
where \
(@=6)
T—}Ll;”a%; 2 Qg) — Llog[1 + Sx—;;?i], for t-distribution
ager
Lao(r) = logz, for gamma distribution

-z for Weibull distribution.
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Theorem 3.1.Suppose that the weight function f¥(z|0) satisfies the condition
above. Then the limiting local p-divergence is given as

. 1 ) 1 ¥ (0|x)
lm ———[D¥ — (1 lim ———— | [ avo (I -
lim et o] =t | [ e (EEE Y ooty
(P” 1
- —2(-_2Varﬂ.;uo(9’$) [tc0(r0) = By 1ot (3.5)
where o is known and w}) (0|x) is the posterior weighted distribution with the
likelihood function f30(x|0) and lye(r) is defined as before.

Proof. Recall that f¥(z|6) = ﬁmhz(r) . Therefore,

I

(z)he(r)ds
LG f#"(wIH)[zw R R RG CY)
and then
o (0|x) _ 2 (x|0)m(0) [ f¥(x]0)w(6)d6 — f2(z|6)x(6) [ Z f(x|0)n(6)dr
or (f £ (z]6)m(0)d8)*
= 7%(9lr ") — fw(a;)h:c(r)lzlr("')dw
= =0) >[1zw< ) - e
e [ - Bl Vel
= W;U(G‘w) [kr(aam) - E7rw(0|z)kr(97$)] ) (37)
where k. (0, ) = l9(r) ~ [ l59(r) ¥ (x]0)dz. Therefore,

0 m¥(0|z) 2
E”r}uo (8lz) (5 71‘;% (9|:L’) ) Eﬂ,‘%(ﬂz) [kTo (0, "I") - Ew;”0(0|x)k7‘o (07 (E)]
= Varw%(gm (kro (6, 2)] . (3.8)

This completes the proof.

The following three corollaries are easily obtained from Theorem 3.1. There-
fore, their proofs are omitted here.
Corollary 3.1. Under the class of ¢-distributions, the limiting local ¢-divergence
between two posterior weighted distributions is given as

: 1 w ¢"(1)
Jim =Tl (DY —p(1)] = Varm o)2) |:lz|9(r0) — Efw (al0) [lzw(TO)]]
¢"(1)

= 5 Varey @) [lajp(ro)] +Varey op) [Ef;%(mw) [lzw(ro)]]}

@' (1)Covru (gl2) | Lalo(r0)s Ew (a)6)llajo(70)] ) 5
0 1]
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where g is known and 7} (f|z) is defined as before and

1 z—8)? ]
7»0 + 2y
aerg 0)2 — 5log [1 ._+_

2 1+ 58

o)

lz|0("'0) = 0’21"0

Corollary 3.2. Under the class of gamma distributions, the limiting local ¢—
divergence between two posterior weighted distributions is given as
1 ¢"(1)

Jin e P8 — o] ==

VGT’W';UO (6)z) [ln:z: - Ef#’é (z6) [ln:z:]] .

Corollary 3.3. Under the class of Weibull distributions, the limiting local ¢-
divergence between two posterior weighted distributions is given as
1 #"(1)

: w _ w 0 _ 0
Tli)nrlo =)t [DY —(1)] = 5 Vary, (6]z) [93 Ef%(mw)[m ]] .

3.2. Perturbation of Prior

We consider a likelihood f*(z|@) of the form

w(x)

w —
| $7(a) = 5 e )

where w(z) is the fixed weight function and f(z|@) is the unweighted distributions
and perturb the prior which could be again a ¢-distribution, gamma distribution,
or Weibull distribution.

First, we fix the likelihood function f*(z|0) from any location family density
function with location parameter 8 and perturb the prior distribution within the
class of t-distributions with varying degree of freedom r which has the form

, _rl
rC3) [1+(9_”)2] Y1
(rm)2T(5) ro? e

where p and o2 are known location and scale parameters respectively. In this

7 (0) =

case, it has the similar interpretation like the perturbation of likelihood in section
3.1.

Next, we fix the likelihood function f*(z|@) where 8 is a scale parameter from
arbitrary distribution on (0, 00), and perturb the prior within the class of gamma
distributions with varying shape parameter r which has the form

T (0) = ﬂer—le-ﬁ",r >1,8>0,
I(r)
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where the scale parameter § is assumed to be known. Also, it has the same
interpretation like the perturbation of likelihood in section 3.1.

Finally, we fix the likelihood function f(z|#), where @ is a shape parameter
from arbitrary distribution on (0,00)and perturb the prior distribution within the
class of Weibull distributions with varying shape parameter r» which has the form

7 (0) = bre" e > 1.6 > 0,

where the scale parameter b is assumed to be known. In this case it is well known
that when the shape parameter r goes to 1, the prior reduces to the exponential
distribution with known scale parameter b. Thus varying r from 1 to oo, we can
generate a class of priors.

Then for each class, the posterior weighted distribution is expressed as

ool — S @O F(alb)as(r) (39)

[ fo(l®)m(0)d0 [ [ (216)gs(r)do
1+ ge_r—&%)i]u%i‘_l, for t-distribution

where gp(r) = < 97 1B for gamma distribution
gr—le—bo" for Weibull distribution.
Then (%qg(r) = qg(r)l0|$(r) , where
(6—u)?
Té—l—% — Llog[1 + b g 2], for t-distribution
e
l0|m("') = g N .

log#, for gamma distribution
[1 — b67]logh, for Weibull distribution.

Theorem 3.2.Under the above prior, the limiting local p-divergence is given as

i ez Dp = wU)] = Jim oy | [ w2 0lale (D) a0 - o)

710 (1 — 19)? r—7o (1 — 10)2 Tro (0]2)
¢"(1)
= Tva’l‘ﬂ-%(g’z) [lglz(’r())] (310)

where 1o is known and 7. (0|x) is the posterior weighted distribution with the
likelihood function fr(z|0) and lg5(ro) is defined as before.
Proof. It follows that

S O0) = o) 01) — 7 0h) [ laa(rins (01216
= 71'1,”(9':1;) [lelz(r) - E?r}f’(9|z)l6|z(7')] . (311)

Therefore the result is easily obtained.
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4. An Illustrative Example

We consider four plausible candidates of likelihood from the class of ¢-destributions
which are N(6,1),T1¢(6,1),75(8,1) and C(f, 1) under the suitable weight func-
tion w(z). Silliman (1997) considered w(z) = |z|® as weight function. For our
example, we set w(z) = |z] and z? in Table 4.1 and 4.2, respectively. Since there
does not exist moments of Cauchy distribution, we can not find the weighted
distribution with w(z) = z2. Thus Table 4.2 has the values of 73(#, 1) instead of
Cauchy C(6,1). It is assumed for simplicity that the prior is Normal N(0,1).
Remark 4.1. Within a class of ¢ distributions, when g = oo, that is, for normal
unweighted likelihood, I;/4(ro) is easily obtained from corollary 3.1 as follows;

o ()] e

Table 4.1 Different likelihoods of t-distributions with weight |z|

N(9,1) | Tyo(0,1) | T5(6,1) | C(0,1)
x=0 | 0.0562 | 0.0259 | 0.0149 | 0.0031
x=1 | 0.3758 | 0.1516 | 0.0734 | 0.0045
x=2 |3.4836 | 1.3237 | 0.5889 | 0.0156
x=3 | 22.011 | 7.1544 | 2.6634 | 0.0418
x=4 | 100.41 |24.092 | 6.4163 | 0.0515
x=4.5 | 189.42 | 37.304 | 8.0274 | 0.0464
x=5 | 328.89 | 51.685 | 8.9276 | 0.0396
x=6 | 782.84 | 74.054 | 8.8017 | 0.0284
x=10 | 3895.3 | 59.773 | 4.2992 | 0.0102
x=15 | 13802 | 30.101 | 2.0150 | 0.0045
x=20 | 46438 | 17.506 | 1.1578 | 0.0025

Also, when r = 1, that is, the likelihood is from a Cauchy distribution. Then
z—6)2

| o
Lajo(ro) = {Tﬁ——ﬂ - -;—log [1 4o 029) J} (4.2)

Table 4.1 and Table 4.2 present values of the limiting local (-divergence measure
without the constant ¢”(1)/2 for various z under different models. Here the

calculations are performed using the method of numerical integration.
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Table 4.2 Different likelihoods of t-distributions with weight |z |

~ [N®,1) [ Tw(6,1) | 75(6,1) | T5(6,1)
x=0 |0.0329 |0.0191 | 00157 | 0.0083
x=1 0.2759 | 0.1268 0.6124 | 0.0319
x=2 | 3.5197 | 1.3048 | 0.5731 | 0.2410
x=3 | 27.000 | 7.4410 | 2.6470 | 0.9063
x=4 133.62 | 24.479 6.0082 1.5766
x=4.5 | 256.33 | 36.905 | 7.2686 | 1.6735
x=bH 447.81 | 49.824 7.8752 1.6240
x=6 | 1055.6 | 68.153 | 7.5439 | 1.3490
x=10 | 4625.2 | 51.575 | 3.6398 | 0.5662
x=15 | 14773 | 25.848 | 1.7147 | 0.2601
x=20 | 48197 | 15.045 | 0.9844 | 0.1478

For each z, the values of the limiting local divergence measures are decreasing,
when the degrees of freedom go down. For small m(i.e.,ﬁ; < 2), it appears
that those values are small, indicating some degree of robustness with respect to
the choice of the prior. For moderate to large z(i.e.,x > 4.5), however, there
can be a substantial difference among those values, indicating that the answer is
then not robust to reasonable variation in the prior. For all z, it appears that the
values of the limiting local divergence are not varied too much, when the posterior
distribution comes from Cauchy likelihood. Note the dependence of robustness
on the actual value of z. The conclusion in Table 4.2 is similar to that of Table
4.1.

Finally, we observe the likelihood X ~ N(6,1) with weight function w(z) =
|z| and subjectively specify a prior median of 0 and quartiles of +1 and —1.
Now we have four reasonable priors to be considered within the class of ¢-priors
which are Cauchy prior C(0,1), two t-priors T5(0,1.89361), T10(0,2.04198) and
Normal prior. Table 4.3 and Table 4.4 present values of limiting local ¢-divergence
measure without the constant ¢”(1)/2 for various z under different priors using
the method of numerical integration.
Remark 4.2. Within a class of £ distributions, when ry = 0o, that is, for normal
prior distribution, lg;(ro) is easily obtained as follows;

lojz(ro) = [i (9;“>4 - % (0(;“)2} : (4.3)




478 Younshik Chung and Dipak K.Dey

Table 4.3. Different priors of ¢-distributions with weight |z

N(0,2.198) | T10(0,2.041) | 75(0,1.893) | C(0,1)
x=0 0.0030 0.0030 0.0032 0.0030
x=1 0.0061 0.0059 0.0056 0.0036
x=2 0.0385 0.0255 0.0190 0.0082
x=3 0.6844 0.3104 0.1856 0.0294
x=4 4.7352 1.6529 0.8044 0.0613
x=4.5 | 12.061 3.1737 1.3295 0.0609
x=5 22.726 4.9982 1.7619 0.0493
x=6 93.077 9.7506 2.6315 0.0315
x=10 | 1984.2 22.127 2.9775 0.0078
x=15 | 24674 19.785 1.7902 0.0041
x=20 | 101029 20.188 1.3050 0.0005

Also, when r = 1, that is, the prior is a Cauchy distribution. Then

o o
lH|x(7“O) = {W — —;'ZOQ |:1 + (M 029) jl } . (44)

™

Table 4.4 Different priors of ¢-distributions with weight |z|?

N(0,2.198) [ T14(0,2.041) | 75(0,1.893) | C(0,1)
x=0 | 0.0021 0.0020 0.0021 0.0029
x=1 | 0.0056 0.0057 0.0049 0.0029
x=2 | 0.0298 0.0236 0.0158 0.0072
x=3 | 0.6395 0.2987 0.1725 0.0278
x=4 | 4.2789 1.2793 0.7392 0.0576
x=4.5 | 10.985 2.9782 1.2998 0.0569
x=5 | 20.278 4.8976 1.6739 0.0457
x=6 | 89.908 8.9779 1.7983 0.0311
x=10 | 1927.0 20.119 2.8957 0.0076
x=15 | 2198.6 18.256 1.6739 0.0038
x=20 | 9928.29 18.998 1.2096 0.0003

Again we observe that robustness is achieved for smaller values of z and under
heavy tailed priors.
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