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Double Unit Root Tests Based on Recursive Mean
Adjustment and Symmetric Estimation!

Dong Wan Shin! and Jong Hyup Lee?

ABSTRACT

Symmetric estimation and recursive mean adjustment are considered to
construct tests for the double unit root hypothesis for both parametric and
semiparametric time series models. It is shown that simultaneous application
of symmetric estimation and recursive mean adjustment yields the most
powerful test. Moreover, size property of the semiparametric test based on
the simultaneous application is best among all semiparametric tests.
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1. INTRODUCTION

Now days, it is a cliche to say that major economic or financial time series
are well represented by nonstationary time series models. One large class of non-
stationary models is that of first order integrations, which can be characterized
by one autoregressive unit root. However, several authors claimed that double
unit root models are more suitable for some time series such as the commercial
bank real-estate loans (Dickey and Pantula, 1987), the U.S. population (Sen and
Dickey, 1987), the Latin American exchange rates and relative prices (Haldrup,
1994), and the Korean price indices (Shin and Kim, 1999). :

In the literature, several methods are available for testing the double unit
root hypothesis. Hasza and Fuller(1979) and Sen and Dickey(1987) constructed
F-type tests and Dickey and Pantula(1987) proposed a sequential procedure.
Haldrup(1994) and Shin and Kim(1999) constructed semiparametric tests.

We consider two approaches to improve powers of double unit root tests:
the symmetric estimation and the recursive mean adjustment. The symmetric
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estimation proves to be effective in improving powers of double unit root tests as
shown by Sen and Dickey(1987) and Shin and Kim(1999). We expect that the
recursive mean adjustment of Shin and So(2001) and So and Shin(1999) is also
effective in improving powers of double unit root tests. We find that simultaneous
application of the symmetric estimation and the recursive mean adjustment is
more effective both in improving sizes of semiparametric tests and in enhancing
powers of all tests than single applications.

In Section 2, tests are constructed for the eight combinations of (ordinary es-
timation, symmetric estimation), (ordinary mean adjustment, recursive mean ad-
justment), and (parametric model, semiparametric model). In Section 3, Monte-
Carlo experiments are conducted to compare the tests.

2. MODELS AND TESTS

2.1. Parametric tests

We first consider a parametric regression model considered by Hasza and Fuller
(1979) and Sen and Dickey(1987) given by

Ay, = m (Ye—1—p)+meAys1+a1 Ay 1+ +apAly,_pte;, (1)

t=p+3, ..., n, where {3, t = 1, ..., n} is the set of observations, p > 0 is a given
integer, m = (71, m2)', @ = (a1, ..., o)’ are vectors of unknown coefficients, and
A is the difference operator such that Ay, = y; — ;1. For model (1), we assume:

Cl1. e is a sequence of independent random variables having mean zero and

variance o2;
all roots of the characteristic equation 1 — a1 B - ... — o BP = 0 lie outside
the unit circle.

We are interested in testing the null hypothesis of double unit roots
H() LM =g = 0.

Let 0 = (', o/) = (m1, ™, 11, ..., o). A common method for adjusting the
mean parameter 4 is to use the mean adjusted observations y; — 7, where § =
n~1 3% . y; is the sample mean. The ordinary least squares estimator (OLSE)
is given by

6o = (XoX0) ' XpY,
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where X is the (n —p — 2) X (p + 2) row vector whose (¢t — p — 2) — th row is
(yt-—l — ¥, Ayg1, Azyt-—la 7A2yt—p)a t=p+3, .., n,

Y is the (n —p — 2) X 1 row vector whose (¢ — p — 2) — th element is A2y,
t =p+3, ..., n. Another method for mean adjustment is to use recursively
adjusted observations y;—1 — 91, where §; = 1 Zle 4. In the recursive mean
adjustment, a datum y; at a time ¢ is adjusted for the mean through the partial
sample mean %;, the average of the data up to the time point. The OLSE based
on the recursive mean adjustment is given by

Or = (XpXg)'XRY,
where Xp is the (n —p — 2) x (p + 2) row vector whose (¢t — p — 2) — th row is

= 2 2 ‘ _
’
(yt—l Yi—1 Ayt—la A Yi—1,y - )A yt—p)) t=p+3,.,n

See Shin and So(2001) and So and Shin(1999) for properties of the recursive mean
adjustment. The estimator based on the symmetric regression and the ordinary

mean adjustment is
fs = (X5Xs5) ' X§Ys,

where
Xs = (X7| X3| Z7| - |2),

X{ = (Wpr2 =T v Yn-1~ G Ynp-1— T Yn—p-2— T, - Y2 — ),

X3 = (Atpias -0 AUn—1, —AUn—p, —DYn—p-1, -, —Ays)’,

78 = (A%Ypys—iy ooy D%Yn—iy A%Yn_piky - APpgs), k=1, ..., p,
and

Ys = (A%ypis, ooy A2yn, Ayn_p, ..., A?ys).
See Fuller(1976, p. 60) and Pantula et al.(1994) for discussions on symmetric
estimation. The estimator based on the symmetric regression and the recursive
mean adjustment is

bsr = (X5rXsr) " XspYs
where Xgg is the same as Xg except that y; — #; is used in place of y; — 3.
Now, the F-tests for Hy based on 8p = (7}, &), Or = (T, &), 0s =
&s), and Ogg = (Tgp, Ggp) are

(%5,

Fo = #p[(X'X)"] " 0/ (262),

Fr = #p[(XzXr)" ] %R/ (262),
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Fs = #s[(X5Xs)" ] i5/(262),
For = i p[(XsrXsr) ] #sr/(262),

respectively, where (X’X)!! is the upper left 2 x 2 submatrix of (X'X)~! and etc
and &2 is a consistent estimator of o2 for which we may use the OLS variance
estimator. The test Fp is the same as the F-type test (®2(2)) of Hasza and
Fuller(1979) except for mean adjustment. In constructing ®,(2), ordinary least
square regression is performed to the intercept model

Ay =c+ Myt + mAyy + APy + o + APy e t=p+3, .,

In this OLS regression of Hasza and Fuller(1979), the regressor Ay;_; is adjusted
by (n—p—2)~1 dtepra A1 =(n—p-— 2)"Y(yn—1 — Yp+1)- On the other hand,
in constructing Fp, no adjustment is made for Ay;_1. The test Fg is considered
by Sen and Dickey(1987). The tests Fr and Fgg are the same as Fp and Fg
except that the recursive mean adjustment is used instead of the ordinary mean
adjustment. In the following theorem, we give the limiting null distributions of
the test statistics.

Theorem 1. Consider model (1) with C1. Assume 7 = w9 = 0. Then
Fo = 27'BL A5 Bo,
Fp = 27'BRA%!Bg,
Fs = { fy W&y(5)ds}™"{ f, Wosl ) ( 2+ 47 [ W2 (s)ds}
Fsr = {fy Way(s)ds} { [y Wra(s)dW (s)}? + 4~ 1{ [} W2(s)ds}~ 1

where = denotes convergence in dzstmbutzon W (s) is a standard Bmwman mo-

tion on [0, 1],
Ap = ( foi W3, (s)ds i 1Wm(s)W(s)ds> < IS Woz(s)dW(s))
Jo Woas)W(s)ds [} W2(s)ds ’ [ W (s)aw (s) ’
A = (fol Wiy (s)ds [ WRz(s)W(s)ds> B = <f01 WRg(s)dW(s))
S Wy s)W(s)ds Jiw2(s)ds P PR T lw(syaw(s) )
Wa(s) = fo
Woo(s) = W2 fo Wa(r dr
WR2( ) Wz( — 8 1f0 W2

Proof. The results are consequences of the invariance principle n~1/2 E[ °l er =

I

oW (s) and the continuous mapping theorem, where [ns] is the integer part of
ns. Details are omitted.
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Table 1. Null right percentiles of the test statistics adjusted for mean.

probability of larger value
n 10% 5% 1% 10% 5% 1%
Fp, Z(Fo) Fg, Z(FS)
25 3.88 4.96 7.60 7.55 9.72 15.13
50 3.89 4.86 7.15 744 9.30 13.63
100 3.90 4.82 6.94 743 9.15 13.05
250 3.90 4.80 6.72 740 9.05 12.73
500 3.90 4.80 6.72 736 9.02 12.75
Fg, Z(FR‘) Fsp, Z(FSR)
25 248 3.28 5.23 546 7.29 11.80
50 2,56 3.30 5.15 5.60 7.22 11.21
100 2,59 3.34 4.97 5.63 7.27 10.86
250 2.64 3.38 5.03 5.68 7.33 11.10
500 2.63 3.35 5.04 5.71 7.33 10.92

In Table 1, some percentage points of the test statistics are presented. These
percentiles are constructed from 50,000 simulated test statistics for model A%y, =
T (ye—1 — ) + mAy—1 + et =1,..,n withy_; =y =0, 11 = m = 0, and
standard normal errors e; generated from RNNOA, a FORTRAN subroutine in
IMSL(1989).

2.2. Semiparametric tests

We next consider a semiparametric regression model considered by Haldrup(1994)
and Shin and Kim(1999) given by

A?yy = i (Y1~ ) + Ay 1 Fuy, (2)

where u; is a stationary process satisfying the following condition:
C2. E(ut) = 0 for all ¢;

sup; E[|ug[™¢] < oo for some 57 > 2 and € > 0;

0% =lim, n LE[> | ui]? exists and 02 > 0;

{ut} is a strong mixing, with mixing coefficients ~,, satisfying > >°_, %171—2/ T<
00.
This condition is required for invariance principle of the partial sums of u;.

We now construct semiparametric tests. Let 7o = (To1, T02)’, Tr = (Tr1,
7_1'32)’, Tg = (7_1'51, 7—r52)’, TSR = (ﬁ-SR17 ’I_I'SRQ)', Fo, F’R, Fs, FSR be the same as
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%o, R, Ts, Tsr, ¥o, Fr, Fs, Fsg, respectively, in Section 2.1 constructed with
p =0. Alsolet X, Xg, X5, Xsg be the same as Xp, Xg, X5, Xsr, respectively,
constructed with p = 0. The semiparametric tests are
Z(Fo) = (5‘u/5)2ﬁo—2_1M51[2/_\(mAyAzymoyy—moyAymoyAz ) (5\ ) ]
Z(FR) = (6u/6)2FR_2_1M1¥1[25‘(mAyA2ymRyy_mRyAymRyA2 ) (5‘ ) Ryy]
Z(Fs) = [(0u/5)7s1, (6/0u)Ts2) (X5 Xs)[(6u/)Ts1, (3/5u)Ts0]' [(257),
)Ts

Z(Fsr) = [(6u/0)TsR1, (0/6u)Tsre)(X 5 Xsr)[(0u/5)RsR1, (5/54)RsRa] [(252),
where (52, 52) are consistent estimators of (0, 05),
Mayazy = n73Y Ay Ay, MAyAy = n=23" Ay Ay,
moyy =1~ Y (v — )%, moyay =17 Y (Y — §) Ay,
— 2 Z( __ —)AZ Mo =m . 2
MoyA2y =T yt—y Yt, o OyyMAyAy = MOyAys
MRy =1~ Z( —71)?, Mpyay =172 3 (ye — §1) Dy,
MRyAzy = —2 Z(yt Ut) A Y, Mpg= MRyyMAyAy — m%%yAy?

A=2" (a —52)/52,
¢ is an integer that increases with n and wpe = 1—h /(£+1). The test Z(Fp) and
Z(Fs) were introduced by Haldrup(1994) and Shin and Kim(1999), respectively.
The other two tests Z(Fg) and Z(Fsg) are the recursive counterparts of Z(Fp)
and Z(Fs), respectively.

Theorem 2. Consider model (2) with condition C2. Let my = w9 = 0. Then the
limiting distributions of Z(Fo), Z(Fgr), Z(Fs), Z(Fsg) are the same as those
Fo, Fr, Fs, Fsgr, respectively, given in Theorem 1.

Proof. The results are consequences of the invariance principle n=1/2 E£ °l U =
oW (s) and the continuous mapping theorem together with consistency of (o ,G2).
Details are omitted.

Since the limiting null distributions of Z(Fp), Z(Fr), Z(Fs), Z(Fsg) are the
same as those of Fo, Fg, Fs, Fsg, respectively, we can use the percentage points
in Table 1 for testing purpose. For consistent estimators of (a 02), we may use

65 =n"" Sy G + 207 Y Whe S Wlsn, 0, =1 IR
or

52 = n7 Y (A%)? + 207 oy w Dot e(A%y) (APy;_p), 8 =
n~t Z?:l (Azyt)v
where @i, = A%y, — To1(ys—1 — §) — To2lAys—1 are residuals in the OLS fitting
to model (2). The estimators (52, 52,), being based on the null model, would
give better size performances and the other estimators (%, 63,), being based on
OLS-residuals, would give better power performances for the test statistics.
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3. A MONTE CARLO STUDY

We compare size and power properties of the eight tests through Monte-Carlo
experiments. Data are simulated from model

A’?th = Wl(yt_l—M)+772Ayt—1+04A2yt—1 +é, (3)

with the standard normal errors e; generated by RNNOA and yo = y_1 = 0.
The parametric tests Fo, Fr, Fs, Fsg are constructed by fitting model (3). The
semiparametric tests Z(Fp), Z(Fg), Z(Fs), Z(Fsg) are constructed with lag-
window £ = 4(n / 100)'/* and variance estimators (62, 52,). The nominal level
of the tests is set to 5% and the number of replications is 10,000.

We first investigate size performances for which we consider the following
parameter combination: n = 25, 50, 100, 250; a = .8, .4, 0, -.4, -.8. Table 2

reports empirical sizes of the test statistics. We observe the following points. The

parametric tests Fp, Fr, Fg, Fsg have reasonable sizes regardless of type of mean
adjustment except for (n = 25, 50 and & = 0.8). Sizes of the semiparametric tests
Z(Fo), Z(FR), Z(Fs), Z(Fsg) seem to be affected by type of mean adjustment:
compared with Z(Fp), Z(Fg) has better size for & > 0 but has worse size for
o < 0; compared with Z(Fs), Z(Fsg) has better size for o > 0 while having
similar size for @ < 0. Among all the semiparametric tests, the test Z(Fgg)
based on symmetric estimation and recursive mean adjustment has the best size
performance. For example, if n = 100, o = 0.8, the size value 13.8% of Z(Fspg) is
much better than the corresponding size values (30.3%, 31.3%, 22.1%) of (Z(Fp),
Z(Fr), Z(F5s)).

We next look into power performances for which we consider the following
parameter configuration: n = 100; (1 -+, 14 m2) = (1, .95, .9), 71 > m9; a = .8,
4, 0, -4, -.8. Table 3 reports empirical powers of the test statistics. We find the
following facts. The tests Fr, Fsg, Z(Fg), Z(Fg r) based on the recursive mean
adjustment have higher powers than the corresponding tests Fp, Fs, Z(Fp),
Z(Fs), respectively, based on the ordinary mean adjustment. For example, if
(1+m = 1,14m = 0.9, o = 0), the power values (43.8%, 47.0%, 51.5%, 52.1%)
of (Fr, Fsr, Z(FRr), Z(Fsg)) are greater than the corresponding power values
(36.2%, 37.5%, 38.1%, 41.2%) of (Fp, Fs, Z(Fo), Z(Fs)), respectively. This
power comparison is meaningful because size values of the tests at (1 +m =
1+ m = 1, o = 0) are all close to the nominal level 5%. Among the four
parametric tests (Fp, Fg, Fg, Fsg), the test Fsg has the highest power and
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among the four semiparametric tests (Z(Fo), Z(Fr), Z(Fs), Z(Fsg)), the test
Z(Fsg) has the highest power.

From this Monte-Carlo study, we can say that the recursive mean adjustment
and symmetric estimation substantially improve powers of tests. The two meth-
ods have “cocktail effect” in that joint application of these two methods are more
effective in improving powers of tests than single applications. In addition to
power improvement, joint application of the two method enhance size properties

of the semiparametric tests.

Table 2. Empirical sizes(%) of tests for double unit roots adjusted for mean.

n a Fo Fr Fs Fsgr Z(Fp) Z(Fgr) Z(Fs) Z(Fsgr)
25 8 124 10.8 46 3.0 58.1 48.3 20.4 13.7
25 4 80 7.8 48 3.9 20.2 14.6 11.4 5.7
26 .0 73 7.2 4.7 44 10.4 7.4 6.9 5.0
25 -4 6.2 6.6 43 4.2 8.6 18.5 7.7 9.4
25 -8 6.8 6.9 48 438 31.9 68.4 33.1 35.3
50 .8 82 81 49 3.7 48.4 39.6 22.4 13.8
50 4 6.3 64 50 4.8 15.2 10.4 10.1 6.0
50 .0 66 6.2 53 4.7 8.9 6.9 6.9 5.6
50 -4 59 5.9 48 4.7 7.9 19.4 7.7 8.8
50 -.8 5.8 5.7 46 4.9 34.3 74.8 34.0 32.5
100 .8 6.5 6.3 4.7 4.2 38.1 31.3 22.1 12.4
100 4 57 5.6 49 45 11.3 7.9 8.5 5.7
100 .0 56 5.5 4.8 4.6 7.1 6.2 6.1 5.2
100 -4 5.1 5.3 46 5.1 7.5 17.9 6.9 8.5
100 -8 58 5.3 52 5.0 32.9 75.6 31.9 31.3
250 .8 59 54 53 43 30.3 33.3 19.8 114
250 4 53 5.6 52 5.0 7.8 8.9 7.1 5.4
250 .0 54 5.5 51 b4 6.3 5.5 5.7 5.6
250 -4 50 5.5 50 4.8 8.0 29.5 6.1 6.9
250 -8 5.0 5.2 4.8 5.0 33.3 92.6 25.4 23.5
500 .8 5.1 4.9 51 4.6 27.4 32.4 19.0 11.6
500 4 5.3 5.1 52 4.9 7.7 8.2 7.2 5.2
500 .0 53 4.9 52 4.5 5.5 5.1 5.5 4.8
500 -4 50 5.0 51 5.1 7.6 30.4 5.4 6.3
500 -8 48 48 49 44 314 93.3 18.6 181
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Table 3. Empirical powers(%) of tests for double unit roots adjusted for mean.

m o o Fo Fgr Fs  Fsgr Z(Fo) Z(Fg) Z(Fs) Z(Fsr)
1.00 100 8 6.6 6.6 50 4.3 37.5 31.2 216 12.4
1.00 95 .8 153 14.7 149 16.8 30.7 20.7 30.0 19.0
1.00 90 .8 248 26.8 26.9 325 28.1 19.1 29.5 24.6
.95 95 .8 398 41.6 48.4 56.2 48.4 39.7 54.7 49.6
.95 90 .8 577 66.0 70.8 80.6 53.9 50.8 64.9 66.6
.90 90 8 772 85.6 83.2 94.6 66.3 68.5 80.2 85.2
1.00 100 4 59 49 4.9 4.2 11.2 8.0 8.3 5.3
1.00 95 4 165 175 17.0 21.8 17.0 11.6 17.5 18.2
1.00 90 4 347 401 37.1 479 26.7 23.8 30.0 36.0
.95 95 4 473 54.2 58.2 70.6 40.9 40.7 51.9 60.7
.95 90 4 726 828 85.1 92.9 61.5 - 686 77.4 86.6
.90 90 40 927 971 97.9 99.5 84.5 91.8 95.5 98.5
1.00 100 .0 5.3 5.7 4.8 4.8 7.2 6.6 5.9 5.4
.00 95 .0 158 173 15.8 224 16.8 18.1 17.3 22.9
1.00 .90 .0 362 4338 38.1 515 37.5 47.0 41.2 52.1
.95 95 .0 49.0 56.6 60.1 73.8 50.1 58.3 62.4 74.6
.95 90 0 776 86.3 89.1 94.9 79.7 87.9 91.6 95.6
.90 90 .0 958 98.6 99.2 99.9 96.9 99.1 99.5 99.9
1.00 100 -4 57 5.7 5.0 5.4 7.8 18.3 7.7 8.5
1.00 95 -4 163 175 16.3 23.0 33.8 53.4 35.0 40.9
1.00 90 -4 376 45.7 40.0 53.7 74.9 89.5 76.8 81.4
.95 95 -4 502 574 60.3 749 80.5 89.2 87.7 93.1
.95 90 -4 798 885 90.4 96.1 98.0 99.4 99.4 99.8
.90 90 -4 96.6 99.0 99.3 99.9 99.9 100.0 100.0 100.0
1.00 100 -8 53 5.4 4.6 4.5 34.0 75.4 33.3 31.0
1.00 95 -8 170 17.8 171 23.2 90.5 98.0 90.5 89.0
1.00 .90 -8 389 476 41.7 551 99.8 100.0 99.8 99.8 |
.95 95 -8 504 583 61.0 748 99.8 100.0 99.9 100.0
.95 90 -8 808 89.8 91.2 97.0 100.0 100.0 100.0 100.0
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