A New Estimator for Seasonal Autoregressive Process

  • So, Beong-Soo (Department of Statistics, Ewha Womans University)
  • Published : 2001.03.01

Abstract

For estimating parameters of possibly nonlinear and/or non-stationary seasonal autoregressive(AR) processes, we introduce a new instrumental variable method which use the direction vector of the regressors in the same period as an instrument. On the basis of the new estimator, we propose new seasonal random walk tests whose limiting null distributions are standard normal regardless of the period of seasonality and types of mean adjustments. Monte-Carlo simulation shows that he powers of he proposed tests are better than those of the tests based on ordinary least squares estimator(OLSE).

Keywords

References

  1. J. Journal of American Statistical Association v.79 Testing for unit roots in seasonal time series with a unit root Dickey, D. A.;Hasza, D. P.;fuller, W. A.
  2. Journal of American Statistical Association v.74 Distribution of the estimators for autoregressive time series with a unit root Dickey, D. A.;Fuller, W. A.
  3. Introduction to statistical time series(2nd de.) Fuller, W. A.
  4. Time Series Analysis Hamilton, J. D.
  5. Journal of Econometrics v.44 Seasonal integration and cointegration Hylleberg, S.;Engle, R. F.;Granger, C. W. J.;Yoo, B. S.
  6. The Canadian Journal of Statistics v.17 no.3 Limit theory for autoregressive-parameter estimates in an infinite-variance random walk Knight, K.
  7. Econometric Theory v.12 Unit root tests based on M-estimators Lucas, A.
  8. Econometric Theory v.15 Cauchy estimation for autoregressive process with applications to unit root tests and confidence interval So, B. S.;Shin, D. W.
  9. Statistics & Probability Letters v.43 Recursive mean adjustment in time series inference So, B. S.;Shin, D. W.
  10. Handbook of Econometrics Unit roots, structural breaks and trend Stock, J. H.;Engle and Mcfadden, D. L.;Amsterdam