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Abstract In this paper, we consider the scheduling of SE(switching element)-disjoint multicasting
in photonic Banyan-type switching networks constructed with directional couplers. This ensures that
at most, one connection holds each SE in a given time thus, neither crosstalk nor blocking will arise
in the network. Such multicasting usually takes several routing rounds hence, it is desirable to keep
the number of rounds(i.e., scheduling length} to a minimum.

We first present the necessary and sufficient cendition for connections to pass through a common
SE(ie, make crosstalk) in the photonic Banyan-type networks capable of supporting one-to-many
connections. With definition of uniquely splitting a multicast connection into distinct subconnections,
the crosstalk relationship of a set of connections is represented by a graph model. In order to analyze
the worst case crosstalk we characterize the upper bound on the degree of the graph. The successor
paper(Part 1I)[14] is devoted tc the scheduling algorithm and the upper bound on the scheduling
length. Comparison with related results is made in detail.
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With  the wide—band
technelogies, it has been shown that large-scale
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photenic  switching networks can be constructed
using 2X2 LiNbOs directional couplers as the basic
switching elements{SE’s)[4],[13]. Banyan, Shuffle,
and Baseline networks and theirs reverse versions
are typical examples of a backbone for such
networks extensively used in parallel processing
and high-speed switching systems[4],[5],[11],[13].

The  photonic promise

networks virtually



4438 AR =FA  AREN A B A A 3 T019

unlimited bandwidth. However, they possess their
own problems, for instance, path-dependent signal
loss and crosstalk. Studies show that the crosstalk
is more severe than the loss [13]. The photonic
crosstalk occurs when two or more connections
pass through a directional-coupler-based SE in
common. A typical system-level approach to the
zero—crosstalk ts to ensure that at most one input
of each SE will be used at any given time, ie.,
SE-disjoint routing!’[4],16].

Qiao and ZhoulB6] and Pan et a/[4)
scheduling  algorithms  for
SE-disjoint one-to-one connections i the photonic

studied
various establishing
Banyan network and discussed the scheduling
lengths in terms of average number of routing
rounds. Vaez and Leal9],[10] presented wide-sense
strictly  nonblocking

nonblocking networks and

networks2), respectively, under various crosstalk
constraints. However, the results are applicable to
the multi-Banyvan networks and multi-Benes
networks when they are loaded with one-to-one
connections only. Pankaj[7] proposed asymptotic
upper bounds on the number of wavelengths which
are needed

networks

to make rmulti-Benes multicasting

nonblocking,  respectively, in  the
strict-sense and in the wide-sense. In [8], we
studied the wide-sense nonblocking and the strictly
nonblocking Banyan-type multicasting networks.
The works are based on the necessary condition
that connections to be intersected in a common link

thus, the optimality of the nonblocking conditions

1) Even if only one signal passes through a photonic SE, a
smaall portion of it may leave at the other unintended
output. Hence, this stray signal may arrive at the input
of the next stage SE and will result in the second order
crosstalk[4], Nevertheless, this is much smaller than the
first order crosstaltk. In this paper, we will consider the
first order crosstalk only, as in [4],06],[9],[10].
Distinction between crosstalk avoidance and prevention
is meaningless in this paper.

{11 In the rearrangeable nonblocking network, some of
existing connections may be reconfigured for it to be
nenblocking. The wide-sense nonblocking is achieved
by a clever algorithm that carefully selects the
forthcoming connection paths in order to avoid all the
blocking states of the netwerk without disturbing
existing connections. The strictly nonblocking network
has no any constraints.

2

=

would not be justified.

In this paper we study the problem of scheduling
SE-disjoint muiticasting in the directional-coupler—
based Banyan-type Such
scheduling usually needs several routing rounds

switching networks3.

therein, the key factor pertaining to it is to keep
the number of rounds(ie, scheduling length} as
upon
technologies considered, the scheduling length can

few as possible. Depending switching
be interpreted as the number of time slots in the
time domain approach[13], as the number of copies
of the switching network in the space domain
approach(9], and as the number of wavelengths in
the wavelength domain approach{?], all required to
make crosstalk-free. Multicasting(i.e., cne-to-many
connectiorr) is a communication primitive used in
high-speed switching and routing in order to
simultaneously send data to more than one output
for  multi-party communications like  video
distribution and teleconference.

Thus, our study deserves to receive attention,
due to the generality of multicast connection, the
abstraction of the scheduling length, and the
extensive application of the Banvan-type networks
to high-speed switching and parallel processing
systems. The study consists of two papers. The
first(Part 1) is devoted to the graph theoretical
analysis on the worst case crosstalk and blocking
among the multicast connections. Part II gives a
SE-disjoint

nonblocking

scheduling algorithm for  the

multicasting and presents various
networks under crosstalk-free constraint.
The rest of this paper is as follows. Preliminaries
on the Banyan-type switching network are
introduced in the next section. We present the
necessary and sufficient condition for connections to
make crosstalk in the multicasting networks, In
Section 3, a graph meodel is introduced for the
representation of the crosstalk refationship of
connections. In order to analyze the worst case

crosstalk we consider the upper bound on the

3) Throughout this paper we refer to Banyan, Shuffle,
Baseline networks and their topological equivalents[12]
as Banyan-type networks.
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degree of the graph. Extension te the graph
representing the link-disjeint multicasting is given

in Section 4. Section 5 conclude this paper.

2. Preliminaries

Without loss of generality, we use the N XN(N=2")
reverse Baseline network[12] as the representative
of Banyan-type networks. Fig. 1 depicts a 16X16
network. There are four stages, 1, 2, 3, 4(=log:16),
Sixteen

respectively, from left to right. inputs

(outputs) are numbered O thru 15, respectively,
from top to bottom. We assume every photonic
SE(switching holds  the

capability supporting lower and upper broadcasts, as

element) multicasting

well as one-to-one functions, straight and cross. A
multicasting SE can be constructed with directional

couplers and other devices like splitters or

combiners{for instance, see[3],[13]).

Slages

Inputs

P 1 2 3 4
<0.10,3}>
<1.{1,51>

<2.12.6%>
<3.4.7)>

I
onnections
to be sslup

A
<10,{8,11}>

Qutputs

12 <12.{12)> 12
13 <1313l

i s
4 4810,14)> 14

<i5,{15}>

Every photonic SE is capable of multicasting as well as unicastil

3 upper Iower
straight Cross broadcast  broadcast
Fig. 1 A 16X16 reverse Baseline network

The unique feature of the Banyan-type networks
is that the path between each input-output pair of
the network is determined by the corresponding bit
of the hinary
output{2]. i i(1<i<n)-th bit is 0 then, the active
input link of the SE at stage / is connected to the

representation of the destination

upper output link; otherwise the input is set up to

the lower output link. Consider, for instance, the
routing to destination output 5 in Fig. 1. Since the
corresponding binary representation of the output is
0101, the sequence of decisions made by the SE at
each stage is given as UP, DOWN, UP, and
DOWN, respectively, from left to right. Thus, the
path to the output from any source input can be
easily and uniquely established by simple
bit-hunting.

Denote by <w,S$> a connection from an input w
to a non-empty set S of destination outputs, we
{0,1,...~-1}, S<{0]1,..,N-1}. Then, <w5> is
one-to-onefi.e., unicast) if and only if [SI=1 and
aone-to-many(i.e., multicast) otherwise, where |S|
denotes the cardinality of S.

Photonic  crosstalk occurs when two or more
comnections go through some SE in common. In
Fig. 1, for instance, <010,3}> and <3,{4,7}> use a
common SE at stage 2. Hence, the output signals
of the SE would be distorted. Moreover, <0,{0,3}>
and <1,(15}> collide at links, respectively, between
stage | and 2, 2 and 3, 3 and 4. The link-blocking
also makes the crosstalk. If two connections
intersect at a link between stage j and j+1, 1=<j<
n-1, evidently they use commonly the SE’s at both
SE-disjeint

crosstalk problems.

stages. routing will prevent the
We first consider a simple topological property of
The following

of the

Banyan-type switching networks.
holds due to the Buddy property[15)
Banyan-type networks.

Observation I: In the N xN(N=Z"} Banvan-type
network, an SE at stage j, 1=/=n, is reachable to
Z inputs and T outputs, respectively. That is,
there exists a back-to-back fully binary tree in
which the root is an SE at stage j and the number
of leaves, ie, inputs(respectively, outputs) of the
left(right) subtree is 2¢2"7') such that 2 -2 =
ZN(for instance, see Figl2)

Let C(i/) dencte the number of bits in common
prefix between the n-bit binary representations of
two integers i and J. For instance, C(1001,1011)=2,
and C(1000,0100)=0. Given any <w,f> and <x,5>,
w=e, £NS=g it follows that 0=Clw,x),Cl(rs)=n-1
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and 0=Clw,x}+C(r,s)=<2(n-1) for any r<I and s&
S. With such notation a condition that connections
will pass through a common SE is given as
follows.

Lemma 1 In the NXN(N=2") photonic reverse
baseline network, <w,R> and <x,5> use a common
SE(le, make crosstalk) if and only if Clwx>
(r,s) = n-1 for some rER and s<8S.

Assume <w, B> and <x5>
pass through commonly some SE at stage j{1<j<

Prooft Necessity):

n). Clearly, the common SE is reachable to inputs
w and x, and also to some outputs rEf and sE5.
We note that inputs{outputs) of the reverse baseline
network are consecutively numbered 0 thru N-1,
respectively, from top to bottom. Considering
Observation 1, the numerical difference between w
and x is given as 1 < |w-x| < 2-14. Given n-hit
binary representations of w and x, we have Clw.x)
>n~j. Similarly, we have 1 < |r-s| = 2.1
Therefore, Clr,s} = n-(n—j+1) = j-1 and finally,
Clw,x)+Cir,s) = n-1, Suffictency): Let Clwx)=t, 0
<t<n-1, then, 1< lw-xl < 2"°-1. Since Ci{rs)=
n-(t+1), we have 1 < Ir-s| < 2°'-1 for some rER
and s€5. That is, there exists a back-to-back fully
binary tree in which the root is the SE at stage
n-t and the number of inputs(outputs) of the
left(right) subtree of 2°%(2""), as Observation 1. At
n-{t+1) bits of the n-bit
representations of r and s are the same hence, the

least first binary
routing to the outputs r and s, respectively, from
inputs w and x will result in intersection, at least,
at stage n-t. [

Coroflary 1. <w,R> and <x,5> intersect at stage
J(1<j<n), for the first time, if and only if Clw,x)=n-j
and ((r,s}2j-1 for some r&ER and sE5.

From Lemma 1, letting Clw,x)=(n-1)/2 and C(r.s)
2(n-1)/2, it is seen that the maximum number of
connections that go through an SE in common is 2
Un1¥2F 24 the center stage (n+1)/2(respectively, n/2
or (n/2)+1) for oddleven) n where, lx] denotes the

4) Far any set S, [S| denotes its cardinality, Notation H-jl
is used to denote the absolute numerical difference
bhetween two integers i and j. Thus, distinction between
these two notaticns comes without confusion.

greatest integer less than or equal to x.

Definition I Given each inputloutput) set {(Q,1,..,
N-1} of the reverse Baseline network, let IW%
(=OW™E) be &g -f bz -frl, .., & f+{8sp-1)}
where, fE{0,1, .. (N/&g-1}, Sop=a2m ¥ paeh
IWELOW™) is called inputfoutput) intersection
Hence, fsg is said to be
window size, ie., TWE=lOW E=dsg.

window. intersection
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Fig. 2 Input intersection windows WS and output
intersection windows OW®% in the NXN
Banyan-type switching network

Fig. 2 shows input{output) intersection windows
in the NXN Banyan-type switching networks in
which N=16 and N=32, respectively. With definition
of intersection window, the upper bound on the

routing rounds in the SE-disjoint multicasting can
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be derived in terms of window size 0Oss. Mare

importantly, splitting each multicast connection into

several subconnections based on intersection
windows helps us to easily analyze the worst case
intersection in the multicast trafficc The next

section will cover these in detall.

3. Graph Model for Crosstalk Connections

In this section we introduce a graph called S5G
(SE-Sharing Graph)
SE-sharing(ie., crosstalk) relationship among the

in order to represent the

connections, We begin by defining subconnections.

Definition 2. Given <w,5>, let $ be partitioned
into a set of subsets {S*} such that S*=SNOW™;
and S°5 #g for some fE{01, .., (N/8xz)-1}. Each
<w,SSEf> s said to be subconnection of <w,S5>.

For the output set {81014} of <14.{8,10,14}> in
Fig. 1, it is seen that {810}COW*% and {l4}C
OWSE;. Hence, the connection has two unique
<14,(8,10}> and <14,{14}>. By
definition a one-to-one connection is subconnection
itself. Given <w,S> and {<wS 5>}, it follows that
SECOWSE, 1<IS°E <8 and that S=US™E, NS
21 = U<wSpH < N/bs

Definition 3 : An SSG(SE-Sharing Graph), Gsg =

(VSE,ESE). is defined as follows. Vsg 1s a set of

subconnections

vertices corresponding to the subconnections, and
Esr is a set of edges such that an edge is drawn
hetween two vertices corresponding to crosstalking
subconnections.

Fig. 3 depicts Gsg from the connections shown in
Fig. 1. In Gsg, there are no direct edges among the
vertices that correspond to the subconnections with
an identical input(for instance, see the vertices
corresponding to <2{2}> and <2{6}>). Because
these subconnections are defined from a single
one-to-many connection, they will never make the
crosstalk even if they use some SE in common.

Definition 4: In Gsg, physical degree of a vertex
v, denoted by pd{v), is the number of vertices
adjacent to v. Logical degree of v, ld{v), is defined
to be the number of vertices that are adjacent to v

and correspond to  subconnections with  different

inputs. Physical(respectively, logical) degree of Gsz,
pd(Gse)(ld(Gsg)), is the maximal physical(logical)
degree of a vertex in it.

Fig. 3 Gsg from the connections shown in Fig. 1

In Fig. 3, pd(<3,{4,7}>)=5, H<3i4,71>)=3, pd
(Gse)=h, and Id(Gsg)=3,
bounds on pd(Gse) and Id{Gsr) are respectively as

respectively. The upper
follows,

Lemma 22 It holds for any Gsg that pd(Gse)<
05nbse for even n and pdfGse) <025(n+1)6sr for
odd n, respectively, where 8sp=281"%

Proof. We first consider odd n. Suppose an
arbitrary subconnection <w,\5‘g Eg> such that we&E
W5, S™,20WE, for some fg€10,1,..,(N/8sp)-1}.
By bearing Lemma 1, we count all subconnections
that will maximally intersect <w,5‘§Eg> at stage 1, 2,

n, respectively(for the sake of convenience,
readers may refer to Fig. 2 b)), Noting [OWE |=6s,
it follows that <w,8™"z> and &g-1 other subconnec-
tions can intersect for any stage j=(n+1)/2, provided
that 15°%,l=1. Next we consider the intersections at
stage 1, 2, ... (n-1)/2, respectively. An SE at stage
1 is reachable from 2 inputs and 2" cutputsiie., N/6
se output intersection windows) thus, <,5%,> may
intersect (N/dsgl-1 other subconnections(note that
constant “1" accounts for the subconnection destined
for OWSF, and this must be excluded from the
counting since all such subconnections already
considered). At stage 2 an SE is reachable from 2
(N/2)(1/8sE)
intersection windows), respectively. Hence, excluding

inputs and 2 outputs(ie, output
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the subconnections considered at stage 1, it follows
that [(NV/22)(1/85)-112%" additional subconnections
can intersect <w,SgEg> at stage 2. Following the
similar argument, it is seen that [(N/2*™)(1/6sg)-1]
2*! additional subconnections at stage 3, ..., [(N/
2B () /5e)-112" W2 additional subconnections
at stage (n-1)/2. Therefore, the maximal number of
subconnections that will intersect <w, S .>(.e., the
maximal physical degree of the vertex corresponding
to <w,5*,>) is given by (Ssp-1)+ (tglz[(N/?"l)(l/
8sp)-11 - 27=0.25(n+1)8. With the similar argu-
ment, it follows that pd(Gse) < (s 1)+ g[(f\’/?'l)
(1/85p)-11 - 2" = 0.5ndse for even n. [

Lemma 3 For any Gsg, it is given that ld(Gse)
£28s,-2 when n is even and Id(Gsg) £1.58s5-2
when n is odd, respectively.

Progfs By definition of logical degree of a vertex,
[(N/Z™)(1/8s£)-11 of each formula given
in the proof part of Lemma 2 becomes 1. This
leads to that Id{(Gss) < (8se-1)+ “};’:Q 97 = 15
sg - 2 for odd n, and Id{(se) < (dsp-1)+ z L
= 285 - 2 for even n, respectively, ]

Note that pd{Gsg)=Od(Gse) - logeiN) for
sufficiently for any

the term

large N. Lemma 3 holds

one-to-one connections in  the Banyan-type

switching networks, because every one-to—one
connection is subconnection itself thus, pd{Gsg)=
ld((Fse). Furthermore this is also true for any set of
multicast connections {<w,S>} in which the output
set S of each <w.S> is such that SSOW®% for
some f={01,....(N/6sg)-1}{8]. That is, the fanout
capability of multicasting is restricted to the stage
[(7+1)/2] thru n where, [x] denotes the least integer
greater than or equal to x. Any connection under
such output{s) constraint will have only one
subconnection regardless of whether it is one-to—
one or one-to-many. The restriction can be
considered as a routing algorithm and will be used
for developing the wide-sense nonblocking networks
in the successor paper[l14].

Observations 20 It (s true that pd(Gse)(=ld{Gsg))
=168~ respectively, 208se-2) when n s odd

{even), provided that Gse is obtained from any

one-to-cne connections or one-to—many connections
{(<w,S5>} in which § of each <w,5> is such that SE€
OW"E, for some FE(0,1,...,(N/bsg)-1}.

4. Extension to Blocking Connections

So far we have considered the crosstalk relation—
ship of the connections. A companion problem many
researchers have been being interested in is the
link-disjoint(ie, nonblocking) routing for the
Banyan-type switching networks[8]-[10].

Consider the NxN{N=2") Banyan-type multicasting
network, as Fig.l. For the simplicity, we say that a
link is at stage j if it is between stage j and j+1, 1
<7<n-1. Cleary, link-blocking may happen at stage
1 thru n-1. The link at stage f is reachable to 4
inputs and 2*7 outputs, respectively. It is seen that
2 connections can collide at the center
stage n/2(respectively, (n-1)/2 or (n+1)/2) for

even{odd) n. A condition similar to Lemma 1 is

at most,

given as follows.

Coroliary 20 In the N XN(N=2") reverse baseline
network, connections <w, B> and <x,S>(w=x, RN
S=g) collide at some link(ie., block each other) if
and only if Clw,x)+C(r,s)2n for some rER and s
&85,

By letting ¢
of &sp in definitions given so far with it, we have
the blocking
in our

= o2 and replacing all occwrence

another graph G: that represents
relationship among the connections, as
previous work[8]. G:=(VL,E;) is defined as follows:
Vi is

subconnections defined based on the intersection

a set of vertices corresponding to the

window size Jr, and Er is a set of edges such
that two vertices are interconnected with an edge if
their corresponding
some flink. Note that 4.=Jsg for even n and 4=

subconnections intersect at
dsz/2 for odd n, respectively. The upper bound on
the physical degree of (7, pd(GL), was given in [8
}. The upper bound on the logical degree Id(GL) is
as follows.

Corollary 3 For any Gi, it given that Id(GL) 1.5
8.-2 for even n and ld(Gi)=<26,-2 for odd n,
respectively, where =g b?

Proof. By Corollary 2 and analogy to Lemma 3,
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{(n2}—1 N
1d(Gr) is given as ldiGr) < (8-1)+ g 2 for

—piz L
even n and [d(Gr) < (6.-1)+ 2 -2 for odd n,
respectively. Hence, the corollary follows. ]

5. Conclusion

In this paper, we have presented the necessary
and sufficient condition for connections to make
crosstalk in the photonic Banyan-type multicasting
networks., The worst case crosstalk has been
characterized in terms of the degree of the graph
representing the crosstalk among the connections.
We note that the optimal scheduling problem is
NP-complete{Z]. In the successor paper[14] we will
present an approximation algorithm that guarantees
its scheduling length is less than double of the
upper bound on length.
nonblocking multicasting networks will be studied

the optimal Various

under the crosstalk-free constraint.
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