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The Ordering of Conditionally Multivariate
Random Vectors?
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Abstract

In this paper, we will introduce multivariate versions of bivariate conditionally
positive dependence and the partial ordering is developed among conditionally positive
lower orthant dependent( CPLOD) random vectors. This permits us to measure the

degree of CPLOD-ness and to compare pairs of CPLOD random vectors. Some proper
ties and closure under certain statistical operations are derived.
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1. Introduction

Lehmann [13] introduced the concepts of positive(negative) dependence together with some
other dependent concepts. Since then, much works has been done on the subject and its
extensions and numerous multivariate inequalities have been obtained. In other words, a great
many papers have been devoted of various generalizations of ILehmann’s concepts to
finite-dimensional distributions. For references of available results, see Karlin and Rinott[12],
Ebrahimi and Ghosh[7] and Shaked[16] and Sampson[15] and Baek[2]. Recently, Brady and
Singpurwalla[5] introduced some new conditionally independent and positive(negative) quadrant
dependence concepts of random variables. These concepts are qualitative form of dependence
which has led to many applications in applied probability, reliability, and statistical inference
such as analysis of variance, multivariate tests of hypothesis, sequential testing.

In this paper we will study multivariate versions of bivariate conditionally positive
dependence, namely conditionally independent and positive(negative) quadrant dependence
introduced by Brady and Singpurwallal5] and the partial ordering of conditionally po sitive
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lower orthant dependent (CPLOD) is developed to compare pairs of conditionally positive
orthant dependent ( CPLOD) random vectors. As indicated above, since CPLOD is a qualitative
form of dependence(i.e., it simply indicates whether the pair of random variables are mutually
conditionally positive dependent or not), it would seem difficult, or impossible to compare
different pairs of random variables as to their "degree of CPLOD-ness”. Therefore, the main
goal of this paper is to develop a partial ordering which permits us to compare pairs of
dependence structures of a new CPLOD random vector of interest as to their degree of
CPLOD-ness( the exact definition is given in Section 3).

In section 2, some definitions and preliminary results are given. Conditionally independent,
positively orthant dependent ( CPOD) and positive associated (CPA) random variables are
introduced in Section 3 together with some basic properties used throughout this paper.
Certain closure properties of CPLOD ordering are derived in Section 4. It is shown that
CPLOD ordering is preserved under convolution, mixture of a certain type, transformation of
the random variables by increasing functions, limit in distribution, and other operations of
interest in statistics.

2. Preliminaries

An important principle of probability theory is that the notions of dependence and
independence are conditional, the conditioning being done on some observable or unobservable
quantity, say @ . It is common to think of @ as a parameter and this is the point of view
that we adopt. Brady and Singpurwallal5] introduced some concepts of conditional dependence
between random variables. Let X and Y be two random vectors, of dimension p and g,
respectively.

We start by stating the definitions of conditional independence and positive(negative)
dependence provided by Brady and Singpurwallal5).

Definition 2.1[5]. The random vector X = (X,,--,X,) is 8 € I, conditionally indep endent
of ¥Y=(Y,,,Y,) and #el,(f#l;) conditionally positive(negative) dependent on Y,
denoted by ((XII Y)|0el, >0, <8} if

(a) P(XeA|YeB, 6el))=P(XesAlosl,},

(b) P(XeA|YeB, feL,)>2P(Xe Al L), and

(¢ P(XeAlXYeB, 0e,)<P(XeAlgel;), YA, B, 6,

where A, B are open upper sets ( U is an upper set if g= U, and @< implies b= U
(Shaked, [16]).

Assume that p=q¢=1. Then Definition 2.1 can be stated in terms of the joint and marginal
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distribution functions of X and Y. Let
F(x, y|)=P(X<x,Y<yl8),
Gx|9)=P(X<x|8), and
H(y|8)=P(Y<yl#0).

Then Definition 2.1 is equivalent to

Definition 2.2[5]). The pair (X, Y) is 6=, conditionally independent and 81, (€ I;)
conditionally positive(negative) quadrant dependent ( CPQD(CNQD)) denoted by
(X1 Y61, >0l <0} if

(a) F(x,yl0el)=G(x|0l,)H(y|0<1,),

(b) F(x,yl0el,)=>G(x|0eL,)H(y|0<l,), and

(c) F(x,yl0eL)<G(x|0eL,)Hy|0 ;).

We close this section by stating the following lemma as per Brady and Singpurwallal5].
Lemma 2.3[5]. If conditions (a), (b) and (c) of Definition 2.2 hold and if the conditional
expectations E(X Y|6), E(X|8) and E(Y|8) exist, then Definition 2.2 implies that

(a) E(XY|0el,)=E(X|0s,)E(Y|b8<1,),

(b) E(XY |0 L)2E(X |0 L)E(Y |6 1,), and

(c) E(XY|0eL)<E(X|0eL)E(Y |0 ly).

A strengthening of Lemma 2.3 is
Lemma 2.4[5). Let f, g be increasing functions of X and Y, respectively. Then Definition
2.2. implies that

(a) Cov(f(X), g(Y)|6sl) =0,
(b) Cov(f(X), g(Y)|8€1,)=0, and
() Cov(f(X), g(Y)|6e3)<0.

Proof. This follows by an extension of a proof by Lehmann[13].
3. Definitions and Properties
In this section, we present definitions, notations, and basic facts used the throughout this
paper. We now extend the bivariate case of the CPQD to the multivariate case for a

sequence of random vectors.

Definition 3.1. A random vector X =(X,*-*,X,) is @< I, conditionally independent and
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6 = I, conditionally positive lower orthant dependent (CPLOD) if

@ P(X,<x,~ X,<x,10el)= I]:I}P(X,-Sx,»lé)EIl),

b P(X <%, X,<x,|0eL)> I:IlP(Xinl-lﬁelg).

A random vector X =(X,--,X,) is @< I, conditionally positive upper orthant depend ent
(CPUOD) if

(') P(X, > 51, X > x| 0€ L) > II:IIP(Xi >x,10el,).

A random vector X is @< I, conditionally positive orthant dependent (CPOD) if X is
CPLOD and CPUOD.

Theorem 3.2. Let (a) X=(X, -, X,) and Z=(Z,,-*",Z,) be @ conditionally independent

and CPOD, (b) X be conditionally independent of Z given . Then X+ Z is 8 conditionally
independent and CPOD on I, and I,.

Proof. P(X,+Z,<xy,, X,+Z,<x,|0<1I)
_ f...fP(Xl le_21,"', an Xy — Xy |6E ]1) del’~--_zn|0512('zl; L, Ry Igelz)

= Ll P(X;+Z;<x;l0€1)

Zf“'fg P(X;<x,—z/|0eL)dH,, .. . 10c1(21,, 2,1 0€ 1)

Zf'“f,z P(X;<x;—z;|0€ L) dH , 4e1(2;10 1)

=1 P(X+Z,<x;10€ ). Similarly X+ Z is CPUOD.
Definition 3.3. Let f, g be increasing functions of random vector X = (X, -, X,). Then
X is @ I, conditionally independent and 8 € I, conditionally positive associated (CPA) if

(a) Cov(f(X), g(X)|9611)=0,
() Cov(f(X), g(X)01,)>0..

From Definition 3.3 of conditional independence and positively associated it is not difficult to
show that:

Property 1. Increasing functions of a sequence of @& conditionally independent and CPA on

I, and I, are 6 conditionally independent and CPA on I; and I
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Property 2. The set of consisting of a single random variable is @ conditionally independent
and CPA on I, and I,.

Property 3. Any subset of # conditionally independent and CPA on I; and I, are
conditionally independent and CPA on I and I,

Property 4. The union of 6 conditionally independent and CPA on I, and {1, ared
conditionally independent and CPA on I, and I,.

Proof. The proof will be given for CPA on I,. Let the components of X=(X,=- ,X,)
and Y=(Y,,-,Y,) be CPA, respectively and X, Y be independent given 6. Let us
define the V=g((X, Y), Vo=gx(X,Y) where g;,8 are non decreasing in each

argument. Then it is easy to check that
Co(V,, Vo6 L) =E[Co(V,, Vo|X, 0= ,))]+ Cal E( V|| X, 6 ,), E(V,| X, 6= L,)]
It is clear that for every fixed X = x the conditional covariance of V;, V, is nonnegative
when 6=, and that conditional expectations of V;, V, are increasing in x (in each

argument ) when &<, Therefore the right-hand side of (3.1) is nonnegative.

Definition 3.4. A random vector X is 8 conditionally stochastically increasing ( CSI) in the
random vector Y if E(f(X)| Y=y, 6) is increasing in ¥ for all real valued increasing
function f given @ .

Theorem 35. Let (a) X=(X;,+,X,) given Y=(Y3,-, Y,), be CPOD on I, (b) X, be
CSIin Y for i=1,2,--,n, and ¥ be CPA onl, Then (1) (X, Y) are CPOD on I,
and (2) in particular, X is CPOD on I,.

Unfortunately, the elementary proof Theorem 3.5. for the bivariate case CPQD does not
extend to higher dimensions CPOD on I,. For this reason we present the following Lemma
3.6.

Lemma 36. If Y,,-,Y, are CPA onl, and if g,=(y;,"**,¥») are nonnegative and
increasing for i=1,2,--, k, k=2, then

EU e ¥y, Y102 b1 = T Elg, (1., V)16 L] 3

Proof. We shall prove the lemma by mathematical induction.
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Suppose k=2. By the definition of CPA (Def. 3.3 ), and the fact that g;,=(y1,:",¥,) is
increasing in all arguments, the inequality immediately follows from Property 1.

Now suppose (3.1) holds for £—1; ie,

E[ I[:g,( Y, Y, 6 L]> jl:[:E[g,»( Y, Y,) 0 L]. (32)

Again by Property 1, Egi[(Yl,'--, Y0 h]l and g, [ (Y, -, Y, )6€l,] are CPA.
It follows that
E[flig,-(Yl,--', Ym)lﬁelz]ZE[gk( Yl,"', Yk)lﬁe Iz] E[jl:(g,'(Yl,“-, Ym) IGE 12] (33)

Combining (3.2) and (3.3), we obtain the conclusion of the lemma.

Proof of Theorem 3.5.
(1) observe that

P ), ()Y 9) 102 )

—E, [P( ZQ(X"> x) 1Y, s 12) . I(ﬂ(y,n,-)loefz)]

2E1[ M P(XpxY 051 - 1 (ﬁ(yj>).,)|eezz)}

= [I(E v P(Xp x| X, 028 - Exl|y

YDy |9EIZ)}

T A P(Xpx;10ly) - EXI(ﬂl(Y-U')weh)

> l:[lP(Xi>xi|0512) ;ljx P(Y)>y;l6eL,).

The first inequality follows assumption (a). The second and the third inequalities follow

from assumptions (b), (c), together with Lemma 36. Thus X;,---,X,, Y, Y, are
CPUOD on I, and similarly X,,---,X,, Yi,, Y, are CPLOD on I,.(2) The result follows
immediately from Property 3.

Corollary 3.7. Let (a) X given A, be CPOD onl, ,b)X; be CSI in A for i=1],, n.
Then X is CPOD on I,

Proof. The proof is an immediate consequence of Theorem 3.5 and Property 2.

Let B=pB(Fxl0,--, Fx)|6) be the class of multivariate distribution functions H on R”"



The Orderng of Conditionally Multivariate Random Vectors 243

having specified marginal distribution functions Fx ,--+,Fx, given §.
We consider, B+, a subclass of f, denoted by
B+={H(x1,”'.xn| e I H is CPLOD, H(x,,"--,®|0e Iz)—_—FXl(xllﬁ‘EIz),"'.
H(oo, - x,l0€ ) =Fx (x,|0€D,).
We then define the CPLOD ordering of dependence within the class. Let H, and H,

belong to 8.

Definition 3.8. A random vector X = (X, -, X,) or H, is more &< I, conditionally positive

lower orthant dependent (CPLOD) than is Y =(Y,,, Y, )Jor H, if for all (x,,,x,) € R”,
P(X | <x), -, Xu<x,10€L)=2P(Y<x,-, Y, <x,l0€L),

we write X > (CPLOD) Y or H,>(CPLOD)H,.

4. Closure Properties of (8", (> (CPLOD))

In this section we establish preservation of the CPLOD ordering under convolutions,
mixtures, transformations of the random variables by increasing functions, limits in
distribution, and other operations of interest in statistics.

Lemma 4.1. Let (a) X=(X,,",X,) and Y=(Y}, -, Y,) have distributions H; and H,
respectively, where H;, and H, belong to B such that X> (CPLOD)Y and (b)
Z=(Z,,-+, Z,) with an arbitrary CPLOD distribution function H conditionally independent
of both X and Y given 8. Then X+ Z> (CPLOD) Y+ Z

Proof. From Theorem 32 X+ Z and Y+ Z are CPLOD,

Next we need to show that for each (x;,:, x,)ER",

X+ 2(CPLODYY+ Z (4.1)
Note that the left side of (4.1)

= f---fP(Xlle—zl,"-,X,,Sx,,—z,, l6eLYdH ., .., 16er(21,, 2,10€ L)
> [ [P(YiSti—2, -, YaSay—2,0€ L) dH , .., 1oerz1, 7, 2, |1 0€ )
=P(Y\+Z <%, Yyt Z,<x,|0€ D).

Theorem 4.2. Suppose that (a) the random vectors X > (CPLOD) Y and U> (CPLOD) V,
(b) U is conditionally independent of both X and Y given 8, and Y is conditionally
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independent of V given 8. Then X+ U> (CPLOD) Y+ V.

Proof. By assumption X > (CPLOD)Y. Specifying Z to be U we apply Lemma 4.1 to
obtain

X+ U>(CPLOD) Y+ U (4.2)
Next, we use the assumption > (CPLOD) YV, specify Z to be Y
Y+ U>(CPLOD) Y+ V 4.3)

By combining (4.2) and (4.3), X+ U> (CPLOD) Y+ V.

The following is an application of Theorem 4.2 which is very important CPLOD in
compound distributions which arise naturally in stochastic processes.

Application 4.3. Let (a) (&N;,:--,N,) be a k-variate variable with components assuming
values in the set {1,2,--:} and let (b) {X;,--,Xu):i21} and {Y,,--, Yu):i=1} be
sequence of nonnegative independent #A— variate given § with have distribution functions H;

and H,, respectively, where H, and H, belong to B such that H, > (CPLOD) H,. Then
using the Theorem 4.2, we obtain that
Y,)

(2% Zxa)> (cPLOD) (Z ¥,

Example 1. Let {N{(®)--N,(H|t=0} be a k-variate poisson processes, i.e
N(O=Z,(H+ WD, N(D=Z,(D+ W) where Z\(#), -, Z(D,and W(H are indepe ndent
poisson processes given 8. Let {(X,, ", X !»%=0,1,2,---} and {(Y,,, Y)ln=

Mz

1,2, } be the sequence of independent and identically distributed variables. Define the %

-variate compound poisson processes (X0, , X, (D) =0} and
(Y, (8),, Y, () |20} by
Ni(9) N N N

Xl(t)= = an,"',Xn(t)z' ~ Xnk and Yl(t)= “~ Ynl,"', Yn(t)= = Ynk-

Then, consequently an application 4.3 implies (X;(8, -, X,(H)>(CPLOD) (Y, (¥, -, Y, (D)
for every =0 whenever (X,;,*, X,s)> (CPLOD) (Y,,, ", Y,»).

Our next result deals with the preservation of the CPLOD ordering under mixture.
We may now define the subclass E: of ,B+ by ,B,T =
{H))H(xy,00,:,00|0],, A)=Fx(x,|0€,, A),---,H(00,--,00, x| 0 ), A) = Fx (x,]
e, 2),H)lA is CPLOD, and Fx,--,Fx, are CSIin A}
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Now consider (8] ,>(CPLOD)). The following proposition shows that if two elements of
BF are ordered according to >{(CPLOD), then after mixing on A when 61U, the resulting

: +
elements in A" preserve the same order.

Proposition 4.4. Let the random vector XiA and YIA belong to ,6’,? and let

XIAD(CPLOD) YA for all A Then, unconditionally Xand ¥ belong to 8% and
X>(CPLOD) Y
Proof. From Corollary 3.7, X and Y are CPLOD.
Now, P(X\<x,, X, <x,|10€ )
=FE,P(X,<x,, X, Ex,10€,, A)
>E,P(Y, <x;,, Y, <x,0€1l, A)
=P(Y;<x, -, Y, <x,l0€,).
Thus X > (CPLOD) Y.

Definition 4.5. Functions f: R™— R” are increasing if they increase in each of their
arguments when all other arguments are fixed.

Then we show that the CPLOD ordering is invariant under transformations of increasing
real valued functions.

Theorem 46. Let (a) (X;,Xp . X)) and (Y, Yp, -, Ys), i=1,2,--,n be 0

independent A-variate random variables given 8 with have distribution functions H;, and H,

respectively, where H; and H,; belong to 8" such that H,;>(CPLOD)H,, and (b)
g R"— R, j=1,2,-, k are increasing functions. Then X,;=g;(X;,+,X,)>(C
PLOD)Y ;= gi{(Yy, =, Yy), for j=1,2,-, k&

Proof. The proof will be given for the case k= n=2. For the general k and #,
proof is similar. First we will show that

(g1 (X1, X2, &(X12, X)) and (g, (Y7, Yo, £ Y12, Y»)) are CPLOD.
Now,
Plg (X1, Xn)<xy, & Xy, Xn)<xo|01y)

= EP (g1(X11.x21)5x1, gz(Xlz,xzz)szWEIz, X21,X22)
>E[P(g(Xy,x)<x 0], Xo), P(gfXpp,x0)<x;10€],, Xp)]

> gEP(g,'(Xu,xzi)SxJ b1, X,)
=P(g (X, Xo)<x16€L) P(gy (X, Xp)<x,l 0 D),
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so that (X1, X)), 84X, Xp)are CPLOD, and similarly g,( Yy, Yo), 2o( Y2, Yyo) are
also CPLOD.

Next we need to show that for each (x;, x,) € R%,
Plg (X1, XoD<x1, &( X1y, Xp)<x5|601y)
=FEP (g, (X1, %)<, 8XX12, x0)<xpl 01, Xy, X)
=EP(g (Y1, yn)<xy, 8XYyp, yn)<x310€, Yy, Yoo)
=P(g1(Yy, Yoa)<x, &Yy, Yn)<xl0sh).

In Theorem 4.7 we show that the CPLOD ordering is preserved under limits in
distributions.

Theorem 4.7. Suppose H,> (CPLOD) H, for every n, and H, and H, converge weakly
to H,, H, respectively. Then
H,> (CPLOD) Hy’
Proof. For any x,-,x, writing X,=(X,,, -, X,»and Y,=(Y},,-,Y,,), n=>1,
P(X <xy,, X,<x,10€ )
= lim P(X,, %1, Xpp<x,| 0 L)

n—ro0

> lim P(Yi, <x,,, Yp<x, |0 )

= P( Yl le, Tty YpSXp'HEjz>.
Thus H,> (CPLOD)H,".

We now turn our attention to a simple but important property of the class B+.

Theorem 4.8. Let H, and H, be both having the same one dimensional marginals, where
H, and H, belong to B*. Then if H,=aH,+(1—)H,, a<(0,1), H, is CPLOD.

Proof. We prove this result for CPLOD. By definition, the one-dimensional margina ls of
H, are the same as those of Hy or H,

PHa(Xlsxlr'“anan |6E 12)
=a/PHl(X1” le, ...’Xnan IHEIZ)‘}'(],-—Q)PHz(XM le."',X,,Sx,,l 06]2)

ZainIPH. (X;<xloe)+(1—-a) J:[lPHZP(X,~ <x;|0eL)

= IJPHZ (X:<x;16€ D)
Hence H, is CPLOD.
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