초록
최근 축약 분산 기억 장치(SDM)가 적응적 문제 해결 능력과 하드웨어화의 용이성으로 인해 현실성이 있는 신경망의 한 모델로 제안되었다. 그러나 다층 인식자의 개별 뉴런이 선형 또는 비선형 결정 함수로 해 공간을 이분하고 그들이 다양하게 결합함으로써 일반적인 문제 해결 능력을 갖는데 비해, 축약 분산 기억 장치의 뉴런은 해 공간에서 자신을 중심으로 한 일정 반경 영역을 안과 밖으로 이분하고 이들을 단순하게 합하므로써, 해 공간이 실수 공간과 같이 크기 관계를 갖는 경우 비효율적인 모델로 된다. 본 논문에서는 이러한 축약 분산 기억 장치의 특성과 그 원인을 규명하고, 문제의 해 공간이 단조 증가 또는 감소 결정 함수로 양분되는 경우, 기존의 축약 분산 기억 장치에 크기 비교 과정을 도입함으로써, 주어진 문제를 효율적으로 해결할 수 있는 수정된 축약 분산 기억 장치 모델을 제안한다. 아울러 제안된 모델을 ATM망에서의 호 수락 제어 과정에 적용한 예를 보인다.최근 축약 분산 기억 장치(SDM)가 적응적 문제 해결 능력과 하드웨어화의 용이성으로 인해 현실성이 있는 신경망의 한 모델로 제안되었다. 그러나 다층 인식자의 개별 뉴런이 선형 또는 비선형 결정 함수로 해 공간을 이분하고 그들이 다양하게 결합함으로써 일반적인 문제 해결 능력을 갖는데 비해, 축약 분산 기억 장치의 뉴런은 해 공간에서 자신을 중심으로 한 일정 반경 영역을 안과 밖으로 이분하고 이들을 단순하게 합하므로써, 해 공간이 실수 공간과 같이 크기 관계를 갖는 경우 비효율적인 모델로 된다. 본 논문에서는 이러한 축약 분산 기억 장치의 특성과 그 원인을 규명하고, 문제의 해 공간이 단조 증가 또는 감소 결정 함수로 양분되는 경우, 기존의 축약 분산 기억 장치에 크기 비교 과정을 도입함으로써, 주어진 문제를 효율적으로 해결할 수 있는 수정된 축약 분산 기억 장치 모델을 제안한다. 아울러 제안된 모델을 ATM망에서의 호 수락 제어 과정에 적용한 예를 보인다.