시간지원 데이터의 특성을 고려한 AST-AET 데이터 이동 기법

AST-AET Data Migration Strategy considering Characteristics of Temporal Data

  • 윤흥원 (신라대학교 컴퓨터정보공학부) ;
  • 김경석 (부산대학교 정보컴퓨터공학부)
  • Yun, Hong-Won (Detp.of Computer Information Engineering, Silla University) ;
  • Gim, Gyong-Sok (Dept.of Information Computer Engineering, Busan National University)
  • 발행 : 2001.09.01

초록

본 논문에서는 시간지원 데이터를 과거 세그먼트, 현재 세그먼트, 그리고 미래 세그먼트로 분리한 저장 구조를 기반으로 하는 AST-AET(Average valid Start Time-Average valid End Time) 데이터 이동 방법을 제안한다. 제안한 AST-AET를 계산하는 방법과 이동 대상 이 되는 개체 버전을 정의한다. AST와 AET를 계산하는 방법과 이동 대상이 되는 개체 버 전을 검색하고 이동하는 과정을 보인다. 도한, 제안하는 AST-AET 데이터 이동방법과 기존 의 LST-GET(Least valid Start Time-Greatest valid End Time) 데이터 이동 방법의 사용 자 질의에 대한 평균 응답시간을 비교한다. 실험 결과에 의하면, LLT(Long Lived Tuples)가 없윽 때는 현재 세그먼트의 크기가 비슷 하기 때문에 두 이동 방법의 평균 응답 시간이 비슷하였다. 그러나 LLT가 있을 때에는 LST-GET 데이터 이동방법의 현재 세그먼트 크기가 커지기 때문에, AST-AET 데이터 이 동 방법의 평균 응답 시간이 LST-GET 데이터 이동 방법보다 작았다. 또한, 시간지원 질의 의 평균 응답 시간이 LST-GET 데이터 이동 방법보다 전반적으로 작았다.

In this paper, we propose AST-AET(Average valid Start Time-Average valid End Time) data migration strategy based on the storage structure where temporal data is divided into a past segment, a current segment, and a future segment. We define AST and AET which are used in AST-AET data migration strategy and also define entity versions to be stored in each segment. We describe methods to compute AST and AET, and processes to search entity versions for migration and move them. We compare average response times for user queries between AST-AET data migration strategy and the existing LST-GET(Least valid Start Time-Greatest valid End Time) data migration strategy. The experimental results show that, when there are no LLTs(Long Lived Tuples), there is little difference in performance between the two migration strategies because the size of a current segment is nearly equal. However, when there are LLTs, the average response time of AST-AET data migration strategy is smaller than that of LST-GET data migration strategy because the size of a current segment of LST-GET data migration strategy becomes larger. In addition, when we change average interarrival times of temporal queries, generally the average response time of AST-AET data migration strategy is smaller than that of LST-GET data migration strategy.

키워드

참고문헌

  1. R.T. Snodgrass, 'Temporal Databases: Status and Research Directions,' ACM SIGMOD Record, vol. 19, no. 4, pp. 83-89, December 1990 https://doi.org/10.1145/122058.122068
  2. R.T. Snodgrass(ed.), Proceeding of the International Workshop on an Infrastructure for Temporal Databases, Arlington, TX, June 1993
  3. C.S. Jensen, M.D. Soo, and R.T. Snodgrass, 'Unifying Temporal Models via a Conceptual Model,' Information Systems, vol. 19, no. 7, pp. 513-547, December 1994 https://doi.org/10.1016/0306-4379(94)90013-2
  4. C.S. Jensen and R.T. 'Snodgrass. Semantics of Time-Varying Information, Information Systems,' vol. 21, no. 4, pp. 311-352, 1996 https://doi.org/10.1016/0306-4379(96)00017-8
  5. C.S. Jensen and R.T. Snodgrass. 'Temporal Data Management,' Technical Report(TR-17), Time Center, June 1997
  6. H. Gregersen and C. S. Jensen, 'Temporal Entity-Relationship Models-a Survey,' IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 3, pp.464-497, May/June 1999 https://doi.org/10.1109/69.774104
  7. R. Elmasri, M. Jaseemuddin, and V. Kouramajian, 'Partitioning of Time Index for Optical Disks,' Proceedings of the International Conference on Data Engineering, Phoenix, AZ, pp. 574-583, February 1992 https://doi.org/10.1109/ICDE.1992.213151
  8. V. Kouramajian, Temporal Databases: Access Structures, Search Methods, Migration Strategies, and Declustering Techniques, Ph. D. Dissertation, pp. 101-118, The University of Texas at Arlington, 1994
  9. M.A. Nascimento, M.H. Dunham, and R. Elmasri. 'M-IVTT : A Practical Index for Bitemporal Databases,' Proceedings. of the 7th International Conference on Database and Expert Systems Applications(DEXA'96), September 1996
  10. B. Salzberg and V. J. Tsotras, 'Comparison of access methods for time-evolving data,' ACM Computing Surveys , Vol. 31, No. 2, pp. 158-221, 1999 https://doi.org/10.1145/319806.319816
  11. M. Bhlen, C. S. Jensen, and B. Skjellaug, 'Spatio-Temporal Database Support for Legacy Applications,' in Proceedings of the 1998 ACM Symposium on Applied Computing, pp.266-234., Atlanta, Georgia, February 27-March 1, 1998 https://doi.org/10.1145/330560.330675
  12. N. Tryfona and C. S. Jensen, 'Conceptual Modeling for Spatiotemporal Applications,' Geoinformatica, Vol. 3, No. 3, October 1999, pp.245-268 https://doi.org/10.1023/A:1009801415799
  13. N. Tryfona, S. Andersen, S. R. Mogensen, and C. S. Jensen, 'A Methodology and a Tool for Spatiotemporal Database Design,' in Proceedings of the Seventh Hellenic Conference on Informatics, pp. 53-60, Ioannina, Greece, August 26-29, 1999
  14. J. Skyt and C. S. Jensen, 'Vacuuming Temporal Databases,' TimeCenter Technical Report TR-32, 20 pages, September 1998
  15. 윤홍원, 김경석, '시간지원 데이타베이스에서 자료의 이동을 고려한 저장 방법의 성능 평가', 정보과학회논문지(B) 제25권 제5호, pp. 756-767, 1998년 5월
  16. S. Kim and S. Charkravarthy, 'Temporal Databases with Two-Dimensional Time: Modeling and Implementation of Multihistory,' Information Science, vol.80, nos.1-2, pp.43-89, September 1994 https://doi.org/10.1016/0020-0255(94)90058-2
  17. J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass, 'On the Semantics of 'Now' in Databases,' ACM Transactions on Database Systems. Vol. 22, No. 2, pp.171-214, June 1997 https://doi.org/10.1145/249978.249980
  18. H. Yun and K. Kim, 'Experimenting with Segmentation and Non-segmentation Methods for Storing Temporal Data,' Proceeding of CNDS'98, pp.113-118, San Diego, CA, January 1998
  19. 윤홍원, 김경석, '시간지원 데이타를 위한 분리 저장구조와 데이타 이동 방법', 한국정보처리학회 논문지 제6권 제4호, pp. 851-867, 1999년 4월
  20. I. Ahn and R.T. Snodgrass, 'Partitioned Storage for Temporal Databases,' Information Systems, vol. 13, no. 4, pp. 369-391, 1988 https://doi.org/10.1016/0306-4379(88)90004-X
  21. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R.T. Snodgrass(eds.), Temporal Databases: Theory, Design, and Implementation, pp.137-138, Benjamin/cummings, Redwood City, CA, 1994
  22. http://www.cs.auc.dk/TimeCenter