42 BERATEEEA H o B

ol Al 28 A A 1 E(00L3)

LAY o8 alolawloﬁ-.~¢4

zo

(Maintaining Join Materialized VleWS For Data Warehouses
using Referential Integrity)

ol £ 7"
{(Wookey Lee)

2 % AAn:s

o) doleslolst ol 2HE aRAoE SAasA Ystosn], 2

e 7+ wolgt JxM 19 doletuzte] g SE2 Ho AdAd B Exolth B AFoA
= 4 exﬂ‘Tﬁr o] B8 7129 ATES PP olN F, Aale] FAEA, BAAA, D AAA
Z

A0 FHIAT. 2 YoM FRRAYE B BT AR AN TS AN,

O
o
G FAD) A BRANN B AT AAE AAT e, U4E ATHOE B AAEAS 2o
9 A BERAY AGEU SRAL BEE AR A2E WL AN

Abstract View materialization has extensively been researched as one of the strongest alternatives
to cope with processing huge data warehouse information. In this paper we deal with the maintenance
of complex join materialized view in response effectively and efficiently to the changes of data sources.
A formal approach is introduced that figures out what makes the problem difficult. Investigating a
solution scheme, referential integrities are analyzed in terms of inserts and deletes both in the
referencing relation and in the relevant referenced relation. Locks on the current database should be

minimized, so that it can be a self-maintainable in updating the data warehouse system.

1. Introduction

Data warehouse is considered as a collection of
materialized view over one or more operational data-
bases, for which proper maintenance is critical [6, 10].
Maintaining materialized view with join operation is
complex for the sources are decoupled, so that
traditional approaches may exhibit anomalies [4, 18].
When a view can be maintained at the warehouse
without accessing hase relation, we say the views

are self-maintainable and it has been identified as

- This work was supported by the Korea Science and Engineer—
ing Foundation (KOSEF) through the Advanced Information
Technology Research Center (AITrc).

tEAEY . 4Edgw AFEFE ws
wook@hana.sungkyul.edu

1999 3¢ 89

2000 1€ 18Y

EREHF
AAER

desirable [7, 16, 17].

Three ways can be classified to support the
materialized view maintenance such as the subject,
the object, and the update time respectively. The
subject represents by which the initiative is drived:
pulled by the view or pushed by the base relation
[6]. The object means the data that should be sent
to view: base relation per se [2, 191, auxiliary
relation [3, 11,16, 221, and delta portion called
differential file [12, 13, 20].
classified two ftypes: immediate [1, 19] and
incremental [6, 11, 16, 20, 23], and the latter one in
turn consists of deferred [6, 19]1and periodical [21].

The update time can be

Various combinations can be generated among them.
Once a base relation is used as an object, then the
deferred scheme with pushed strategy is inevitably

selected. Because there is actually no room for

FaFA4E o] 2T doletdlolatf2e = HAR #e 43

updating immediate time scale, it is liable to generate
too excessive costs each time. Thus we call the
method with pull-type, deferred time span, and
using base relation as a baseline method. A popular
trend is the combination as the push or pull (say,
all) type with incremental method using auxiljaly
relations; we call it all-inc-aux method. Incremental
approaches are frequently accepted in the data
warehouse environment, but the main weakness of it
is the lack of flexibility to cope with ad hoc quéries
into the data warehouse. Our approach can be said
as the push or pull (say, all) type with all kinds of
update time scale (say, afl) using object having a
differential file combination, thus called all-ali-df
method (‘all’ means that all the domain span can be
supported).

Updating the data warehouse views, locks on the
current database should be minimized which means a
self-maintainability. If referential integrity constraints
are present then it is not necessary to replicate the
base relations in their entirety at the warehouse in
order to get the self-rmaintainability of a view.
Extensive researches Thave been devoted in
investigating the referential integrity [1, 9, 14, 15].
Until now there are, if any, few relevant studies to
maintain materialized views with referential integrity

constraints [8, 13, 14, 19].

2. View definitions and notations

A’ data warehouse view formally be expressed as
follows (A modification, of course, assumed to be a
delete and an insert in series with the same
time-stamp (SYSDATE));

new view(’) = old view(v)tinserts(I)-deletes(D), (1)

where the old view and the new view dre
respectively

v=Tl,0.(R XR,x--XR)

V=11, 0 (RXR,X:--XR ")

and the inserts(I) and the deletes(D) are
I=Tl, 00X RyX---X R, + R XL, XX R+t R XR, XX)
D=1],0.(D;XRyX---XR, + R %D, %+ XR, ++-++ R xR, X--XD,)T€e
spectively. Specifically, for R, is a base relation and
R is an after image of the relation, Ta is a
projection on an attribute(4), and oc is a selection

on a condition(C), and ¥ is an argument set. of
relations J€¥ {1, 2, 3, -+, n}. Then the new base
relation R’ can be expressed as the old base relation
R; and its changed portion dR;:

Ki=R+dRi=FRi+Li~Difori=% (2)
where dR; is consisted of a set of inserts(}) and
deletes(D;) in the base relation(R;).

3. Motivating Example

Consider a data warehouse for a company having
of data
warehouse is collecting data from 3 base relations of

product and group. Suppose this kind

which schema are suggested as follows (the primary
key in each relation is underlined):

o P (pcode, price, go); This is a product relation
having such attributes as product code, price,
and group number as a foreign key that has the
condition such as gnoP € gno.G. For example,
the product relation P currently has five tuples
as {(s100, 500, 2), (m5, 600, 3), (m6, 900, 3),
(s150, 1000, 2), (v111, 3000, 1)).

(G (gno, grname); this relation called a group
relation, contains the group number as a pn'ma:y
key and group name. For example, the product
relation G cuwrently has four tuples as {(1,
computer), (2, tv), (3, video), (4, audio)}.

The view is defined as follows: ‘

V=T1picode, Porice, Ggon, Gegname 0 P gno=Ggono(P X G). For

example, the view then has five tuples as {(s100,
300, 2, tv), (m5, 600, 3, video), (m6, 900, 3, video),
(s150, 1000, 2, tv), (v111, 3000, 1, computer)}.

4. Differential Files

In this paper we want to use differential file (DF).
That can be derived from the active log of a base
relation [13, 21]. The schema of DF of base relation
(R) is defined as dR:{(Ay operation), where Ar is
relevant attribute set of I; and operation indﬁcates
the type of operations applied to the tuple. It has one
of the two operation types: ‘insert” or ‘delete’. Then
each record of changes in a base table (&) is
appended in the DF (say, dR:) with respect to non—
decreasing order of time-stamp. It is assumed to be
located the same site of the base relation.

44 GRABB =EA) s efo]EhH ol A 28 7 A 1 Z(2001.3)

Example 1. In the previous example, an item ‘eql’
is inserted in P. It can be represents in dP as {(eql,
1500, 4, insert)}. Then transactions that the price of
'm-5 is raised from 600 to 800 and a product
'S100" is deleted are represented as {(m-5, 600, 3,
delete), (m-5, 800, 3, insert)}, {(s100, 500, 2, delete)}
respectively.

4.1 Referential integrity

warehouse views

in maintaining data

Without loss of generality, we can assume that a
referencing relation (&) has a relationship with
referenced relation(s) (say, R;) such that EiArx S
RiAx. Where the FK € { S¥ is said to be a
foreign key that is relevant to a key (K) of R,. A
tuple is changed (ie., inserted, deleted, or updated)
in a relation, a referential integrity (RI) constraint
might be fired to check the relevance of the change.
Then we define an insert MI; and a delete MD; as
a modified insert in R; due to the change in K; and
a modified delete in R, due to the change in K;
respectively. Then s and D’ represent the net
insert and the net delete in R; respectively. Then we
can extend the changed portion of the base relation
as follows:

AR, =1,—-D,=(I] +MI ;) - (D’ +MD,) ¢ LS. (3)

Example 2. When a tuple is deleted in G, it may
effect the tuples in P. In this case, the referential
integrity option may be assumed ‘ON UPDATE
NULLIFY'. Then MDgp and Mlgp are in series as
tuples of dP. If a tuple in G, say gno=1 is deleted,
then it triggers a change (modification) in P as
{(v11, 3000, 1, delete), (v11, 3000, Null, insert)}). If
the option is ‘ON UPDATE CASCADE’, then the
MDgp will be{(v1l, 3000, 1, delete)}.

4.2 Algebraic representation for the view

Then the join by the two relations are expressed
as follows:

R/XR;'= (R, +dR)X(R, +dR,)

=(R +I)-D)+MI,~MD)X(R,+I ~D,)

={RXR +RXIMH{I)XR, +I] X1 +MI,x(R; +1)}

AR XD+ 1'% D, —(R,+1,~ D) (MD,, ~ D)+ MI, %D} (4).

When a tuple is deleted (and even though it is

relevant to the view), it is useless to refer to other
tables for joining the deleted tuples. Thus the last
term of the equation (4) can be expressed as follows.
RXD;+I'xXD;=(R,+1;-D,)x(MD; — D)+ MI XD,
=Di><Rj'+DjXR, (5)
Where N1, =®, which means that the insert in
the referenced relation does not affect the (existing)
referencing relation. For MI, is generated by the
change of the referenced relation, which means;
LiNR = @, I;NR, € I,NI. (6)
Then the equation (4) can be expressed as follows.
R/'%XR,'= {foRj}+{Ii°><Rj,}+{(I,9+MIﬁ)><Ij}
—(D,XR'+D;xR"))
Then the new view will be
V=TI, 0 {R xR, }+{I] xR}
+{UI? +MI ,)x1}~(D,xR;'+D; xR")]
=T1,0.[R xR 1+11,0.[I' xR J+I1, 0. +MI)x1,]
—11,0.D;xR;'+D xR} fori, j€ U . 8
In the data warehouse environment, it is sufficient
for the deleted tuples just to delete the tuples in the
join view. For the old image is stored, so there is no
need to refer another relation for join. Thus the last
term of the equation (8) is represented as follows.
[1,0.D,%R'+D xR 1=I1,0.ID+D,] (9)
Therefore by the equation (3) and the equation (9),
the view is represented as follows:
H,0.R xR, +11,0:0) xR, +11,0.1,x1,~11,0.D,xD, (10)
The equation (10) can be explained as follows.
The first term of the above result is the old view
(v). The second term represents that by the net
insert in the referencing relation the relevant base
table should inevitably be searched and joined. The
third termn means that it is sufficient to use the
inserted tuples in the differential file instead of the
base table. The fourth term represents that the
delete operation can be made, just by sending the
deleted tuples to the views. In this paper, we
emphasize that due to the second term of equation
(10), the data warehouse views camnot help referring

the current database.

5. Maintaining Data Warehouse Views

AEFANE 08T dolehaolsheae) 29 AR

5.1 Additional join file and Notations

In this paper in order to update materialized views
self-maintainable, a new file called an additional join
file (AF) is introduced. The schema of the AF of
table F; is defined as the same as R; (the referenced
relation). Without loss of generality, the time—s‘tamp
that the tuple of AF is appended is assumed the
same that the insert transaction occurs. There are
four kinds of transactions as well as three repre-
sentative Rl cases in dealing with the AF. insertions
and deletions in the referencing relation, those in the
referenced relations as well as restrict, cascade, and
nullify, Thus there exist all 12 sub-problems. Here
we consider the transaction cases with respect to the
RI’s. The AF of R, is represented as alt.

We denote ¢ a tuple and by #[X] the subtuple of t
corresponding to the attribute set X. Let’s asswme
that an operation is represented as a braced format
appended after the relation expression such that
Rdinsert} or RiAdinsert} are said the
attribute of R Then t[R.AAlnsert}], for example,
represents an inserted tuple of R, We define f as
‘indicated by RI, such that ¢[&; 1 Riinsert}]
represents a tuple of R, indicated by an insert of R

mserted

5.1.1 Insertion in the referencing relation

If there is an insert in the referencing relation, the
trial to commit the insertion must require a RI check
across the referenced relation in any case of RJ
Which

committed if only there exist a relevant tuple in the

conditions. means that the trial will be
referenced relation. The AF is derived from the
tuples of the referenced relation that the I con—
straint indicates. It can be represented formally as
follows:
akl; = t[B Riinsert}]
512 Deletion in
Insertion in the referenced relation

the referencing relation and

These tow operations may be done without con-
sidering the RI condition. But there are some
detailed
relation as follows: Restrict: MI;=0); Cascade: MI;
*@; and Nullify: MI;:=0.

5.1.3 Deletion in the referenced relation

influences fo the tuples of referencing

If there is a delete in the referenced relation, the

o

2] ¥

transaction must require a [RI check across the
referencing relation in all RI conditions. In case of
restrict condition the transaction will be failed, if
there exist any relevant tuple in the referencing
relation. In cases of cascade and muilify, all *the
should be deleted. It can be
represented formally as Restrict: Not
permitted, if R. Ax = R. Arx; Cascade: MDy —
dR{delete}, and Nullify: v. ¢[R;. Arx= Nulll= delete.
Example 3. In order to insert a tuple (say, topl)

relevant tuples

follows:

into the P in the previous example, the R constraint
is activated the relevance. By the RI constraint, we
can get the tuple (4, audio) from G and append the
tuple to the AF of table G (say, a(). By the
transaction in P, the tuple with (2, tv) is appended
n aG.
5.2 Screening process for the AF

the AF,
should be eliminated. In order to efficiently screen

In maintaining the duplicated tuples
duplicated tuples various methods are suggested [6,
13], in this paper we adopt an incremental method.
When a tuple in the DF or in the AF is appended,
then the screening process is activated and dupli-
cated tuples, if any, should be eliminated. It can be
represented formally as: R, NaR, =@ for gli JEw.

5.3 Maintaining join materialized views

Using the DFs and AFs introduced above, the
data warehouse views can be maintained without
nterfering the current database tables. In this ipaper,
we emphasize that maintaining the data warehouse
views by the AF, there is no need to lock the base
relations.

Example 6. With the DF’s (dP and dG) and the
aG, the view in the example can be refreshed as
follows; {(m5, 800, 3, video), (m6, 900, 3, video),
(s150, 1000, 2, tv), (eql, 1500, 4, audio)}.

5.4 Cost Models

We analyze three kinds of cost model; (1) a
baseline method that uses the base relations to
update the views, (2) an all-inc-aux method as the
push or pull (say, all) type with incremental method
using auxiliary relations; (3) Our approach can ‘be
said as the push or pull (say, all) type with all
kinds of update time scale (say, all) using objects

46 AR 8hE] =1 Holghuol & A 28 | Al 1 5(2001.3)

differential files, thus called all-all-df method.

The cost of updating an object (O in terms of
transactional operation types (77) is obtained and let
Cost(O;, T)) denote this cost. If a method uses an
additional object except the base relation, then a
penalty cost is added for maintaining. It is assumed
to be proportional to the update frequency (f). Then
the total cost of the updates for propagating the
updates to the view can be suggested as follows:

TotalCost = ZIF[COSt(Oi, T;) + Penalty Cost(O)f1.
6. Evaluations

The size of the base table is assumed to be the
same whose cardinality is varied from 10MB to 1GB.
The size of auxiliary relation and the other files
suggested in the previous description is assumed to
be the same, and to be proportional to the hase
relation varied from 1% to 50% of base relation. The
experiments are executed via Mathematica v3.0 in
SUN spark. Three methods are analyzed such as (1)
the baseline method, (2) all-inc-awx method, and (3)
all-all-df method.

Table 1~3 represent the cost comparisons in
terms of modified view sizes according to size of the
base relation changes. The costs are increased along
with the view size as well as the update ratios on
the base relations. The costs of all-inc-aux method
and all~all-df method are relatively more increased
than that of the baseline method. Which naturally
means that the more changes in the base relation,
the more works to do in those two methods.

Fig. 1 represents the cost trajectories according to
the update ratios with a huge size of base relation
(1G). The cost of the baseline method is stable as
update rations increasing, but the costs of the other
two methods are increased rapidly according to the
update ratio. If a base table is updated frequently
roughly less than 309 of base relations, then the
view maintenance by all-inc-aux method or by
all-all-df method is significantly advantageous. It is
mainly derived from the fact that the cost penalties
due to the change of base relations have burdened

each factor.

Table 1 Costs for updating 1% of base relations

dV 10 100 200 500 800 1000
baseline 7200 79200 151200 367200 583200 655200
all-inc-aux | 3677.2 404492 772212 187537 297853 334625
all-all-df 1524 16764 32004 77724 4123444 138684

Table 2 Costs for updating 10% of base relations

dv 10 100 200 500 300 1000
baseline 7200 79200 151200 367200 583200 655200
dll-inc-aux | 4480 49280 94080 228480 362880 407630
all-all-df 1560 17160 32760 79560 126360 141960

Table 3 Costs for updating 50% of base relations

dv | 10 100 200 500 800 1000
baseline 7200 79200 151200 367200 583200 655200
all-inc-aux | 10400 114400 218400 530400 842400 946400
all-all-df 8600 94600 180600 438600 696600 782600

800000
700000 /——’_._—ml;n;e - A
600000 |- - —t—allincaux | - - -

\
500000 | |—eallalldr |
400000 L

300000 | -
200000

100000 |- ;‘// ,

Cost 3 - . . L s . I I

0.4 U%'ga[e lQéGtio 07 08 09 1

Tig. 1 Cost trajectories in terms of the update ratios
with fixed size (1G) of base relation

7. Concluding Remarks

In this paper we dealt with the maintenance of
complex join materialized view for data warehouses.
TFirst of all, an integrated point of view on view
maintenance such as update object, update subject,
and update time is addressed. We have a formal
approach to figure out what makes it difficult in
maintaining data warehouse views and to suggest a
solution scheme with relevant algorithms for a data
warehouse environment. The solution scheme
investigates RI constraints in terms of changes both
in the referencing relation and in the relevant
referenced relation. Three methods are analyzed such
as the baseline method, all-inc-aux method, and

all-all-df method. Experimental results represent that

F2R24 S 0§ volesloisi e sl 2 AAR B 7

the costs of all-inc-aux method and all-all-df
method are relatively more advantageons than that of
the baseline method. The experiment represent that
the more changes in the base relation, the more
works to do in those two methods. Unless a huge
size (more that 1GB) of base relation is updated
roughly more than 30% of base relations, the view
maintenance by all-inc-aux method or by all-all-df
method is advantageous. It is mainly derived from
the fact that the cost penalties due to the change of
The

solution scheme is shown to be appropriate in

base relations have burdened each factor.

maintaining the data warehouse join views self-

maintainable.

References

[1] Braham, T. O. “Integrating of Inheritance and
Reference Links in the Building of an Object
Distributed Database Management Systems,”
IEEE Data Engineering, pp. 535-541, 1997.
Chao, D., Diehr, G. and Saharia, A., “Maintaining
Join-based Remote Snapshots Using Relevant
Logging,” proc. ACM SIGMOD, Monteal, Canada,
pp. 10-16, 1996.

Colby, L., Griffin, T, Libkin, L., Mumick, I and
Trickey, H., “Algorithms for Deferred View
Maintenance,” ACM SIGMOD, pp.469-480, 1996.
Date, C.]J. and Darwen, H., Foundation for Future
Database Systems, 2 ed., Addison-Wesley, 2000.
Goldring, R., “A Discussion of Relational Database
Replication Technology,” InfoDB, Spring, 1994.
Gupta, A. and Blakeley, J., “Using partial infor-
mation to update a materialized view,” Information
Systems, Vol. 20, No. 8, pp. 641-662, 1995,

Gupta, A., Jagadish, H. and Mumick, I, “Data Inte-
gration Using Self-Maintainable Views,” proc.
EDBTO96, pp. 140-144, 1996.

Harder, T. and Reinert, J., “Access Path Support
for Referential Integrity in SQL2,” The VLDB
journal, Vol. 5, No. 3, pp. 196-214, 1996.

Horowitz, B., “A° Run-Time Execution Model for
Referential Integrity Maintenance,” IEEE TKDE,
pp.548-556, 1992.

Kotidis, Y. and Roussopoulos, N., “DynaMat: A
Dynamic View Management System for Data
Warehouses,” ACM SIGMOD, pp. 371-382, 1999.

Proc.

—
[\\)

[3]

[4]

[5

(6]

(7

—

(8l

—
[{o]
i

[10]

[11] Laurent, D. Lechtenborger, J., Spyratos, N., and
Vossen, G, “Complements for Data
Warehouses,” proc. the 15th Int. conf. Data

[12]

{13}

[18]

[19]

[20

[21]

Engineering, proc. 15th ICDE, 1999.

Lee, W. Park, J. and Kang, S., “An Asynchronous
Differential Join in Distributed Data Repli-
cations,” Journal of Database Management, Vol. 10,
No. 3, Idea—Group Publishing, pp.3-12, 1999.

Lee, W, “On the Independence of Data Warehouse
from Databases in Maintaining Join Views,” Lecture
Note in Computer Science, Springer Verlag, Vol
1676, 1999.

Lee, W, "Data Warehouse Engin independent of
Legacy Database System,” IEEE Trans. on
knowledge and Data Engineering accepted to appear.
Markowitz, V., “Safe Referential Integrity Structures
in Relational Databases,” Proc. VLDB, Barcelona,
Sept. pp.123~132, 1991.

Mohania, M. and Kambayashi, Y. “Making Ag-
gregate Views Self-maintainable,” Data and Know-
ledge Engineering, Vol. 32, No. 1, pp. 87-109, 2000.
Quass, D., Gupta, A., Mumick, I. and Widom, J.,
“Making Views Self-Maintainable for Data Ware-
housing,” proc. Parallel and Distributed Information
Systems, Miami, FL, 1996.

Ram, P. and Do, L., “Extracting Delta for Incre—
mental Data Warehouse Maintenance,” proc. IEEE
Data Engineering, pp. 220-229, 2000.

Ross, K. GSrivastava, D. and Sudarshan, S.,
“Materialized View Maintenance and Integrity
Constraint Checking: Trading Space for
Time,” ACM SIGMOD, pp. 447-458, 1996.
Roussopoulos, N., “An Incremental Access Method
for View Cache: Concepts, Algorithms, and Cost
Analysis.” ACM TODS, Vol. 16, No. 3, Sept. 1991.
Segev, A. and Pak,], “Updating Distributed
Materialized Views,” IEEE TKDE, Vol 1, No. 2,
June, pp.173-184, 1989.
SQLZ, ISONEC 9075:1992,
SQL,” July 1992.

Staudt, M. and Jarke, M., “Incremental Maintenance

“Database Language

of Externally Materialized Views,” Proc. VLDB,
Bombay, India, pp.75-86, 1996.
o] % 7]
19879 MeTisla AGFEE AL
19039 AgdsE YIS AL
© 1996 M=digm AgEes AL
Y 20001 ~ FRd71dA g sta MSE #3
FHE. 19969 ~ A AAdw PAF
HER Zws 20009 ~ #HA] AAd

AFESE 5 AaRokz wolelslolata, H]

Mol mdlg, dEjmoio] & Adeldll FRAE, MIS

