A Constrained Self-Calibration Technique

제약 조건을 적용한 셀프 캘리브레이션 방법

  • 김성용 (포항공과대학교 컴퓨터공학과) ;
  • 한준희 (포항공과대학교 컴퓨터공학과)
  • Published : 2001.04.01

Abstract

셀프 캘리브레이션은 영상 시퀀스에 대한 특징점 정합 결과를 이용하여 카메라 내부 파라미터를 계산하는 기법이다. 이는 임의로 움직이는 카메라를 이용하여 얻은 영상 시퀀스를 이용하여 유클리디안 복원을 수행하는데 응용될 수 있다. 안정적인 3차원 복원결과를 얻기 위하여 본 논문에서는 두 가지 제약 조건을 사용한다(카메라 내부 파라미터의 개수에 대한 제약 조건과 복원할 장면의 기하학적 구조를 이용한 제약 조건). 카메라 내부 파라미터에 대한 제약 조건은 카메라의 하드웨어적인 특성을 반영하며 이러한 제약 조건을 적용함으로써 셀프 캘리브레이션 중 비선형 최적화 과정의 수렴도를 높일 수 있다. 또, 기하학적 제약 조건은 대상 장면의 직각 구조를 이용하여 이에 대한 조건을 분석하여 제약 조건에 대한 수식을 유도한 다음 이를 최적화 과정에 포함시킨다. 합성 영상과 다양한 종류의 실제 영상에 대한 실험을 통하여 본 논문에서 제안된 방법을 이용하면 개선된 유클리디안 복원 결과를 얻을 수 있음을 보인다.

Keywords

References

  1. Olivier Faugeras, 'Three-Dimensional Computer Vision, A Geometric viewpoint,' The MIT Press, 1st editon, 1993
  2. R. Y. Tsai, 'An efficient and accurate camera calibration technique for 3d machine vision,' in IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 364-374, 1986
  3. Oliver Faugeras, 'What can be seen in three dimensions with an uncalibrated stereo rig,' in European Conference on Computer Vision, pp. 563-578, 1992 https://doi.org/10.1007/3-540-55426-2_61
  4. R. I. Hartley, 'Estimation of relative camera positions for uncalibrated cameras,' in European Conference on Computer Vision, pp. 579-587, 1992
  5. R. I. Hartley and P. Sturm, 'Triangulation,' in Proc. ARPA IUW, Monterey, California, pp. 957-966, 1986
  6. R. I. Hartley, 'Projective reconstruction from line correspondence,' in IEEE Conference on Computer Vision and Pattern Recognition, 1994
  7. P. Sturm and B. Triggs, 'A factorization based algorithm for multi-image projective structure and motion,' in European Conference on Computer Vision, pp. II:709-720, 1996 https://doi.org/10.1007/3-540-61123-1_183
  8. R. I. Hartley, 'Lines and points in three views - a unified approach,' in ARPA IU Workshop, Monterey, 1997
  9. Oliver. Faugeras, Q. T. Luong, and S. Maybank, 'Camera self-calibration: theory and experiments,' in European Conference on Computer Vision, pp. 321-334, 1992 https://doi.org/10.1007/3-540-55426-2_37
  10. R. I. Hartley, 'Euclidean reconstruction from uncalibrated views,' in Proc. Second Europe-US workshop on Invariance, Ponta Delgades, Azores, 1993
  11. A. Heyden and K. Astrom, 'Euclidean reconstruction from constant intrinsic parameters,' in International Conference on Pattern Recognition, pp. 339-343, 1996 https://doi.org/10.1109/ICPR.1996.546045
  12. M. Pollefeys and L. V. Gool, 'A stratified approach to metric self-calibration,' in Computer Vision and Pattern Recognition, Puerto Rico, pp. 407-412, 1997 https://doi.org/10.1109/CVPR.1997.609357
  13. S. Bougnoux, 'From Projective to Euclidean Space under any practical situation,' in International Conference on Computer Vision, vol. 2, pp. 790-798, 1998 https://doi.org/10.1109/ICCV.1998.710808
  14. M. Pollefeys, L. VanGool, and M. Proesmans, 'Euclidean 3d reconstruction from image sequences with variable focal lengths,' in European Conference on Computer Vision, pp. 31-42, 1996 https://doi.org/10.1007/BFb0015521
  15. M. Pollefeys, R. Koch, and L. V. Gool, 'Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters,' in IEEE Conference on Computer Vision, Bombay, India, pp. 90-95, Jan. 4-7 1998 https://doi.org/10.1109/ICCV.1998.710705
  16. A. Heyden and K. Astrom, 'Euclidean reconstruction from image sequences with varying and unknown focal length and principal point,' in Computer Vision and Pattern Recognition, pp. 438-443, 1997 https://doi.org/10.1109/CVPR.1997.609362
  17. A. Criminish, I. Reid and A. Zisserman, 'Single View Metrology,' in IEEE Conference on Computer Vision and Pattern Recognition, 1999 https://doi.org/10.1109/ICCV.1999.791253
  18. B. Johansson, 'View Synthesis and 3D Reconstruction of piecewise planar scenes using intersection lines between planes,' in IEEE Conference on Computer Vision and Pattern Recognition, 1999 https://doi.org/10.1109/ICCV.1999.791197
  19. D. Liebowitz and A. Zisserman, 'Combining scene and auto-calibration constraints,' in IEEE Conference on Computer Vision and Pattern Recognition, 1999 https://doi.org/10.1109/ICCV.1999.791233
  20. 권혁민, 한준희, '유일 정합쌍을 이용한 효율적인 특징점 정합기법', 한국 정보과학회 논문지(B), pp. 791-803, 1999
  21. G. Xu and Z. Zhang, 'Epipolar geometry in stereo, motion and object recognition: a unified approach,' Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996
  22. W. H. Press, S. A. Teukolsky, W. T.Vetterling, and B. P. Flannery, 'Numerical Recipes in C: The Art of Scientific Computing,' Cambridge University Press, second edition, 1992
  23. B. Triggs, 'Matching constraints and the joint image,' in IEEE International Conference on Computer Vision, Cambridge, Massachusetts, pp. 338-343, 1995 https://doi.org/10.1109/ICCV.1995.466920
  24. C. Tomasi and T. Kanade, 'Shape and motion from image streams under orthography : a factorization method,' International Journal of Computer Vision, pp. 137-154, 1992 https://doi.org/10.1007/BF00129684
  25. Zbigniew Michalwicz, 'Genetic Algorithms+Data Structures = Evolution Programs,' Springer-Verlag Press, second, extended edition,' 1992
  26. R. I. Hartley, 'In defense of the eight-point algorithm,' in IEEE International Conference on Computer Vision, pp. 580-593, 1995