Fabrication of SiC-TiC Composites via Mechanochemical Synthesis

  • Park, Heon-Jin (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology) ;
  • Lee, Ki-Min (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hyung-Jong (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology) ;
  • Lee, June-Gunn (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology)
  • Published : 2001.04.01

Abstract

SiC-TiC composites have been fabricated by using a mechanochemical processing of a mixture of Si, Ti, and C at room temperature and subsequent hot pressing. TiC powders have been obtained by the mechanochemical processing of a mixture of Ti and C whereas SiC powders has not been obtained from a mixture of Si and C. By using the exothermic reaction between Ti and C, SiC-TiC powder could be obtained from the mixture of Si, Ti, and C using the mechanochemical processing for more than 12h. The X-ray diffraction analysis has shown that the powder subjected to the mechanochemical processing consisted of the particles having crystallite size below 10nm. Fully densified SiC-TiC composites have been obtained by hot-pressing of the powder at 1850$\^{C}$ for 3h and it has shown comparable mechanical properties to those of the SiC-TiC composites prepared from the commercially available SiC and TiC powders. Flexural strength of 560 MPa and fracture toughness of 4.8 MP$.$am$\_$1/2/ have been shown for the SiC-TiC composites with composition corresponding to 0.75:0.25:1 mole ratio of Si:Ti:C.

Keywords

References

  1. J. Mat. Sci. v.31 SiC-TiC and SiC-TiB₂ Composites Densified by Liquid-phase Sintering K. S. Cho;H. J. Choi;J. G. Lee;Y. W. Kim
  2. J. Am. Ceram. Soc. v.79 no.6 In Situtoughened Silicon Carbide-titanium Carbide Composites K. S. Cho;Y. W. Kim;H. J. Choi;J. G. Lee
  3. J. Am. Ceram. Soc. v.73 no.5 Toughening of a Particulate-reinforced Ceramic-matrix Composite by Thermal Residual Stress M. Taya;S. Hayashi;A. S. Kobayashi;H. S. Yoba
  4. J. Am. Ceram. Soc. v.67 no.8 Improvements in Mechanical Properties in SiC by the Addition of TiC Particles G. C. Wei;P. E. Becher
  5. J. Mater. Sci. v.25 no.5 Hot Pressing of SiC-TiC Composites H. Endo;M. Ueki;H. Kudo
  6. J. Ceram. Soc. Japan v.100 no.4 High-temperature Toughening Mechanism in SiC/TiC Composities B-W. Lin;T. Yano;T. Iseki
  7. Mater. Sci. Forum v.179;181 Phase Transformation and Nanostructure Formation of ZrO₂-Y₂O₃ and ZrO₂-CeO₂ Powder Mixtures During High Energy Ball Milling Y. L. Chen;M. Zhu;M. Qi;D. Z. Young;H. J. Fecht
  8. J. Am. Ceram. Soc. v.82 no.5 Mechanochemically Synthesized Lead Magnesium Niobate J. Wang;X. Junmin;W. Dongmei;N. Weibeng
  9. J. Am. Ceram. Soc. v.82 no.9 Ambient-temperature Mechanochemical Formation of Titanium-Alumina Composites from TiO₂ and FeTiO₃ N. J. Welbarn;T. Kerr;P. E. Willis
  10. J. Am. Ceram. Soc. v.84 no.11 Mechanochemical Synthesis and Electrochemical Properties of LiMn₂O₄ H. J. Choi;K. M. Lee;G. H. Kim;J. G. Lee
  11. J. Nanostruct. Mater. v.5 no.1 Synthesis of Nanocrystalline TiC Powders by Mechanical Alloying L. L. Ye;M. Xu
  12. Appl. Phys. Lett. v.65 no.21 Formation Mechanism of TiC by Mechanical Alloying Z. G. Liu;J. T. Guo;L. L. Ye;G. S. Li;Z. Q. Hu
  13. Metall. Trans. v.21A Displacement Reactions during Mechnical Alloying G. B. Schaffer;P. G. McCormick
  14. Am. Ceram. Bull. v.67 no.2 Synthesis of High Temperature Materials b Self-propagating Combustion Methods Z. A. Munir
  15. J. Am. Ceram. Soc. Mechanochemica Synthesis and Pressureless Sintering of TiB₂-AIN Composites H. J. Kim;H. J. Choi;J. G. Lee
  16. J. Mat. Sci. Lett. v.17 Microstructure and Fracture Toughness of in-situ-toughened SiC-TiC Composites K. S. Cho;H. J. Choi;J. G. Lee;Y. W. Kim
  17. Carbides v.2 Engineering Property Data on Selected Ceramics Metals and Ceramics Information Center Battelle Columbus Laboratories