BECBRNP RS
K B
2001 9R 79

weoAze) A2 HH

A New Algorithm for K Shortest Paths Problem*

ByungMan Chang**

—a Abstract m—

This paper presents a new algorithm for the A Shortest Paths Problem which develops initial A shortest paths,
and repeat to expose hidden shortest paths with dual approach and to replace the longest path in the present
K paths. The initial solution comprises A shortest paths among shortest paths to traverse each arc in a Double
Shortest Arborescence which is made from bidirectional Dijkstra algorithm. When a crossing node that have two
or more inward arcs is found at least three time by turns in this A shortest paths, there may be some hidden
paths which are shorter than present A-th path, To expose a hidden shortest path, one inward arc of this crossing
node is chosen by means of minimum detouring distance calculated with dual variables, and then the hidden shortest
path is exposed with joining a detouring subpath from source to this inward arc and a spur of a feasible path from
this crossing node to sink. If this exposed path is shorter than the A-th path, the exposed path replaces the A-th

path. This algorithm requires worst case time complexity of O(#n?), and 0(n?) in the case K < 3

Keyword : K shortest paths problem, Shortest aborescence, Dijkstra method, Dual approach

1. Introduction shortest simple paths which has minimum weight
in a graph G = (N,A) which has node-set N of
This paper presents a problem of finding K cardinality n and arc-set A = (¢;;) of cardinality

£2H$Y 120019 5Y 142 E=2ATAHY : 20014 8Y 30
. B

AT LAY GEATH A Q) ool AFHAL.
SRS EEITE ERPSTEL

80 ps

s

N I R R T R B s e,

m with positive length. In the K shortest paths
problem, for a given positive integer K < n and
a given source—destination pair in directed graphs.
The paths should be simple means that no node
can be repeated.

This K shortest paths problem is useful to
calculate the all pair of K shortest paths for the
automatic vehicle guidance system in the Intelli-
gent Transport System (ITS) [14], transportation
planning analysis, and shipping goods through a
distribution network, and is a well-studied graph
optimization problem that is encountered in
numerous application in telecommunications ,
VLSI design [9] and so on.

This paper focuses specifically on a new K
Shortest Paths Problem (KSP) algorithm which
uses a bidirectional Dijkstra's method [3] to get
an initial set of K shortest paths, and exposes
shortest hidden paths by changing an entering
inward arc centering around the intersection node
that is contained at least three times in the
current apparent K shortest paths, and improves
a current K shortest paths repeatedly until there
are not any crossing node, or shortest hidden
paths. If K < 3, or if the number of the entering
arcs of every nodes is only one without source
and destination node, the initial solution is op-
timal.

There are some methods which have been
proposed for solving this problem.

Lawler [10, 11] presented a search tree type
algorithm with complexity O(Kn’). It find the
shortest path, partition set of paths into subsets,
delete node, force inclusion and exclusion of arcs,
and repeat to find the shortest of shortest paths
in each step.

Dreyfus[4] presented these K shortest paths

from a source node to each of the other nn - I nodes

with time complexity O(K. n’). He computed the
length of the m ~th shortest paths (m < K) from
node s to the other nodes, which are minimizing
over all possible choices of each predecessor node.

Yen [16] developed an O(Kn®) algorithm that
repeats to search candidate shortest paths with
breaking arc and merging the root and the
minimum spur in each iteration, and to select the
shortest one of them on the direct network and
the nondirect network. His algorithm generally
requires a smaller number of intermediate paths.

Hadjiconstantinou and Christofides [7], and
Katoh et al. [8] presented an O(Kn”) algorithm
that gets the shortest path from origin to de-
stination, searches three types of shortest detour-
ing path from a node in the shortest path to
destination, selects the shortest path among all
detours, and iteratively repeats the above proce-
dure.

Almost studies till now have made one shortest
path and after then they repeat to search the next
shortest path one by one with their own methods.
But this paper presents another algorithm which
builds near optimal K shortest paths initially, and

improves the initial solution.

2. Initial Solution Procedure

This section provides the initial solution pro—-
cedure for the K shortest paths problem.

We require the following notation :

s the source node ;

t the destination node ;

Cuv the distance (cost, time) of the arc(u,
v);

T(s) foreward shortest arborescence from s

to every node ;

oAy Y2 A4y 81

Tt reverse shortest arborescence from ¢
to every node ;

T(s,t) a double shortest arborescence made
by merging T(s) and T(t)

T the length from s to node i in T(s) ;
8, the length from ¢ to node i in T(t) ,
fi the predecessor of node i in T(s);
ki the successor of node { in T(t)

(7;, f;) a current label on the node i in T(s) ;
(8;, ;) acurrent label on the node j in T(¢t) ;

(7, 8;) acurrent label on the node i in T(s,t) ;

pr the K-th shortest path from s to ¢ in
an optimal solution ;

P the K-th shortest path from s to ¢ in
the /-th improved feasible solution
(1=1);

FP(g, i,j) the shortest subpath from node g
through node { to node j ;
FP(g(i,j)) the shortest subpath from node g
through arc(i, j) to node j ;

SP(u,v) the shortest path from s to ¢ through

arc(u,v);

HP(g,1j) the shortest path from node s to node
¢t through arc(g, i) and arc(i, j) or
subpath(1, j) ;

LP(P%) the length of P%;

Pai) the shortest path from node s to node
{in T(s);

PG) the shortest path from node j to node
tin T(t);

V() the i-th node in P ;

KSP; the [-th improved solution (set) of K
shortest paths ;

KSPi={PY, P7,, P}

EP; the /-th exposed hidden path which
is shorter than P* ;
IN; the intersection node j whose inward

arcs are more than two ;

CN; the crossing node j ;
IA(G,r)
OA(j,r) the r -th outward arc or outward sub

the r-th inward arc of node j;

path from node j ;
With this notation, we can define as follows :

Tr = é‘s
PY o= oha), vhie), - vhiead) |,

when only if, v5(1)=s, v(q)=t

It’s well known that the shortest paths from node
s to all other nodes in G can be represented by
the shortest path arborescence T (s), and the
unique path from s to ¢ in this arborescence tree,
denoted by s .t represents the shortest

path from s to t. Therefore,
PI: s TW.p= g T 4

We can find T(s) and 7°(t) using Dijkstra’s
method forward from s and backward from ¢
separately. With the bidirectional Dijkstra's al-
gorithm, we can simultanecusly apply the for-
ward Dijkstra’s algorithm from node s and the
reverse Dijkstra’s algorithm from node ¢.

When T(s) and T(t) can be merged, T(s,t)
is produced, and in which we can get the in-
formations about each shortest path SP(u,v).
from s to ¢ to pass through each arc(u,v), and
the length LP(SP(u,v)) of the shortest path SP
{u,v).

In T (s, t), the shortest path from node s to
node t through node i is formed with the path
P(i) U P(i), and the shortest path from node s
to node ¢t through an arc(i,j), node i in T'(s) and
node j in T'(t), is formed using the path P(i) U(j,
J)UP(j). This T(s,t) can be called a Double
Shortest Arborescence(DSA).

Then SP(u,v) can be described with

82 2

ol
re

{a) Example network

(12,18)

6,200 (Cuv, LP(SP(u, v)))

X 0—0
(13,24) O
(5,15) (14,6) (my, 84 (ry, 84}

{b) T(s,t), Double Shortest Arborescence

[Figure 11 An example network and its 7(s.t)

T(s)
< 4

s T(!)'t.

v tion provides an upper bound on the K shortest
paths solutions values.

The KSPi= (P, P7 -, P’} for K = 5 shortest
LP(SP(u,0) = my+cyy+8, (1.1 paths problem in the network of [Figure 1] is as

follows :

The length of SP(u,v), LP(SP(u,v)), is

Therefore an initial solution of a K shortest

paths problem can be found by searching for the P :1-3-4-7-8 LP®P'})H=2
k shortest paths from T(s,t) in ascending order PYi1-4-7- 8, LP(P)=22
of the length of the paths SP(u,v)s. This solu- P 1-3-7-8 LP(P%)=24

BrHRRe A2 A 83

(3,33)

{430) *\
[20.14)

620) \(@551)

[12,18] p —>
10 P
o PP e »

t 4 IS
-7 (a0 PP TTTTTT >

(10,36)

(Cuv, LP(SP{u, v))

620 : :
(7

(
u,‘su] [7!.'\,,5\,]

[Figure 2] KSP for K = 5 shortest paths problem in the network of [Figure 1]

LP(P1)=30
LP(P°)=33

PY:i1-3-4-6-8,
P :1-2-6-8

This KSP may not be an optimal solution.
KSP comprises {P’, P?,--, P*} which is the set
of k apparent shortest paths that pass from s to
t through each specified arc, but is not the set
of an optimal K shortest paths. Some paths in
the KSP are comprised in the optimal solution

and the others may not be.

3. Improvement Procedure

3.1 Crossing Nodes and Hidden Paths

Let an apparent path be one of SP(u,v), V¥V
(u,v) € A, which path has at least one first
passing arc(u,v) in KSP. Let a hidden path be
composed of all arcs which are passed and cover-
ed entirely by some other apparent path in KSP.
Let an exposed path be a new appeared hidden
path by breaking one of arcs of apparent path.

Then all initial K shortest paths appeared in
KSP are the apparent paths. All hidden paths are
not appeared in T(s, t) whether the length of some
hidden paths are shorter than the length of some
apparent paths in KSP. Generally hidden paths
are longer than apparent paths. The hidden path
is not appeared in KSP, because all arcs of hidden
path are already passed and covered by the other
apparent paths. If even one arc of this path is not
passed by the other paths, it is an apparent path.

To obtain the optimal solution, we need to
develop an algorithm to search and expose the
hidden paths shorter than some paths of the
KSP, and to replace some apparent paths by
these exposed hidden paths until there are not
any shorter hidden path in the KSP.

The algorithm in this paper presents to expose
some hidden paths that are shorter than Pk/, and
to replace some of P Vi €K, in KSP, by the
exposed shortest paths.

Let an intersection node i, IN; be a node that
has at least two inward arcs and at least one
outward arc, excluding node s, node ¢ and f;

which has one outward arc. Let a crossing node
1,CN; be an intersection node which at least two
inward arcs are appeared by turns and which is
appeared at least three times in the KSP, Let
IN be a set of intersection nodes, and CN be a
set of crossing nodes.

In initial solution KSP; or feasible solution
KSP,, if there are three or more apparent paths,
HP(g,ij), HP(g.ik), and HP(hij) , then this
node 1 is a crossing node (see [Figure 3)), and
there could be a hidden path shorter than P,
which is HP(h,i k). Because arc (h, i) was
passed by HP(h,i,j), and arc(i k) was passed
by HP(g,i,k), so path HP(h,i k) is hidden and
disappeared by the two apparent shorter path.
And the crossings may be produced not only on
intersection nodes, but also on intersection arcs
and on intersection subpaths which have two
or more inward arcs, like arc(g,i) and arc(h,i)
in the [Figure 4].

OAG,1)

0AG2)

[AG,2)

® O,

[Figure 3] Intersection Node

When a crossing occurs at IN; in the KSP; in
the [Figure 3] or the [Figure 4], IN; should be
appeared at least 3 times in the KSP; . If this
IN; is appeared only two times in the KSP;, the
crossing doesn't occur at this IN;. And even
though this IN; is appeared three or more times,
if only same inward arc is appeared continuously,

the crossing does not occur at IN;.

IAG,D

IAG2)

(a) Cross arc

IAGY)

(Or—>(a)y--»

IAG,2)

(b) Cross subpath
{Figure 4] Cross arc and Cross subpath

A crossing at IN; occurs necessarily in the
case that TA(i,1) is appeared two or more and
IA(i,2) is appeared at least once in the KSP..

We can find out the candidate list of crossing
nodes in the method of check the number of nodes
which are appeared three and more times in the
KSP; within at most complexity O(Kn),

If node i is appeared three times like the sub-
paths g—i—j, g—~i—kand g— i— kin the
(Figure 3], or like the subpaths g—i— /—
g—i—~[—j and g—i— /- kin the [Figure
4al, or like the subgraphs g—i—m ~ I—j,
g—i—om~[—>k and g—i—>m~[—j in
the [Figure 4bl], and other subpaths passed
through node i, which are like A—i— & h—i
— =k or h—i—m ~ [— k, are not appeared
in the KSP, then the paths comprising these
other subpath should be longer than £ %, and the
crossing is not occurred on this node i.

KSP, comprises {P% P75, P%} which is the
set of K apparent shortest paths that pass from

e EREC I EENnE 5
O A e e R S R B S

s to t through each specified arc, but may not
be the set of an optimal K shortest paths. There-
fore some paths in the KSF; are included in the
optimal solution and the others may not be. There
may be hidden paths which are shorter than P
%. When a crossing occurs at the intersection
node, a hidden path EP; is covered and
disappeared by second and next paths which
pass through an intersection node. EP; which
may pass the second or next inward arc and
the second or next outward arc of the intersection
node is not appeared in [Figure 3], because at
least three or more paths passed all arcs of EP;
in advance.

Therefore, if we find out a crossing node from
the KSP;={P% P73, P%) we repeat the
improved procedure in which we search and
expose the hidden paths shorter than /% centering
around the crossing node, and replace P and
some shorter paths in the KSP; by the exposed
hidden paths till there is not any crossing node
or not any exposed path shorter than £% in the
KSP;. But it is not easy to find out crossing
nodes efficiently and to expose hidden shorter
paths which are disappeared by some of apparent
shortest paths.

3.2 Breaking Inward Arc Method

When three shortest paths pass through a node
i, and IA(i 1) are appeared at least twice and
1A(i,2) are appeared once in KSP, then this node
{ is a crossing node, CN,; and a hidden path that
is the next path to pass this CN; is covered and
hidden by the former three paths. Because the
hidden path passes through A (i,2) and OA(i,
2), we need to break temporarily the path to pass

through {A(i,1) of CN; in order to expose this
hidden path.

In case of the [Figure 3], if we break the first
inward arc, LA(i,1), of this CN,, the hidden path,
HP(h,i,k), will be apparent and checked on the
second outward arc, OA(i,2). So we can expose
a hidden path by breaking the first inward arc
of CN;, IA(i, 1)

Therefore, we can make it a rule to break
temporarily this [A(i,1) of CN; in order to expose
a hidden path EP; which passes from node s
through TA (i,2), and OA (i,2) or a second
subpath from CN; to node t.

For example, in the [Figure 3] and [Figure 4],
when each shortest path which passes through
asubpath g—i~j, g—i~kand h— i~ jare
displayed in order in the KSP,, if we break [A
(i,1), that is, arc(g,i), we can expose the hidden
path HP (h i,k) to pass through the subpath
h— 1 ~ k, and if the length of the new exposed
path LP(HP(hik)) is shorter than LP(P*), HP
(h,i,k) replaces P as one path of KSP,...

[Figure 5] CN, with multiple inward arc

In case that the crossing node have many
inward arcs [Figure 5], we can expose hidden
shortest paths with breaking some inward arcs
one by one from the first inward arc of the

crossing node. In the [Figure 5], with breaking /A

86

ol
ok
o

~

Crossing node

Exposed hidden path

NP': s h-i-k-t
NP s frivkt
NPT s heiei-t
NP s fiiet

[Figure 6] Appeared paths and Exposed hidden paths

(i,1), that is, arc(g,i), we can expose hidden
paths HP(h, i, k) and HP(h,i,1), with adding to
break IA(i,2), that is, arc(h,i), we can expose
hidden paths HP(f,i,k) and HP(f,i,l), and with
adding more to break IA(i,3), that is, arc(f,i),
we can expose hidden paths HP(e,i k) and HP
(e,i,]).

Therefore, if a node is appeared at least three
times and two inward arcs of the node are ap-
peared by turns, then there may be a hidden short-
est path in the KSP;, and with breaking the first
inward arc, a hidden shortest path can be expos-
ed. If this exposed hidden path, EP,, is shorter
than the path P k/, this EP; is entered and the
present P is left out, and an improved KSP;.
is produced in ascending order of the path length
with (P4, P, P Y EP.

In this algorithm, in order to expose the new
hidden shortest path, we may repeat to make a
new DSA after breaking any inward arc, and
select some new exposed paths shorter than
P and replace P % and several paths in KSP;
by these exposed shortest paths, until there is no

exposed path shorter than P ¥. But we need to
reduce the complexity to expose hidden shortest
paths with repeating to make a new DSA.

We can expose the hidden paths which pass
CNi in the way of connecting the subpaths pas-
sing from s through the second inward arc or the
next inward arcs to CN;, FP(s,IA(i,a)), where
a =22, with the subpath passing from CN;
through the second outward arc or next outward
arcs to node t, FP(OA (i b),t), where b = 2. In
case that CN, has three or more inward arcs and
outward arcs in the KSP, [Figure 6], we can
connect FP(s IA(i,a)), where a =2, that is,
s~f—i and s~ h—i with FP(OA(b)),
where b 2 2, thatis, i—k ~tand i— 1~ ¢ to
expose HP(h,i, k), HP(h,1,1), HP(f, i k), and
HP(f, i D).

LP(EP;), the length of the new exposed path
EP;, HP(h,i,1), that is, s~ h—i— 1~ tcanbe
easily calculated from the information about 7z
and &7 in T(s,t).

LP(EP;),= xn+tchi+tci+ & 2.0

B R e HAHy 87
N

Lemma [. If an intersection node becomes defi-
nite to be the first crossing node on
the r~th path in the KSP,, then { P"*,
p*, .. P} ={P|, P}, P}, and
r=3

Proof In a KSP;, when at least three shortest

paths intersect centering around a
crossing node, there may be hidden
shortest paths that are shorter than P x
But there is not any hidden path until the
first crossing node is appeared three
times. If the first crossing node is checked
on the r-th path in the KSP;, the crossing
node is appeared three times by the r-
th path The hidden shortest paths to pass
through the crossing node in the fourth is
appeared after the r-th path Therefore r
= 3, and there is not any hidden path
from the first path to the r-th path. The
hidden shortest path should be longer
than the r - th path Therefore { P,
P .. prt= { p%,p%, ...,plr}.

Lemma 2 Ina KSP, if there is no crossing node,
then the KSP, is the optimal solution.

Proof. If there is not any crossing node in the
KSP;, then r = K and by Lemma 1,

there is not any hidden path which is
covered and hidden by some paths
centering around any crossing node in

the KSP,. Therefore the KSP; is the op-

timal solution.

In a KSP,, if there is no crossing node by r
—th path, there is no hidden path till r-th path,
and all these r apparent paths are included in the

optimal solution. Though it becomes clear that

there 1s a crossing node, if the first crossing node
is detected on the k - th path, P%, there is no
hidden path in the KSP;, because the first hidden
path can be existed in the next of the k-th path
at the earhiest. Therefore the KSP; is the optimal

solution.

Lemma 3 In the K =3 shortest path problem,
KSPy-; is the optimal solution.

Proof It becomes clear that afirst crossing node
is appeared at the earliest on the 3rd path
in the KSP-;. It follows from Lemma 1
that r > K =3, then {P'*,P**" P¥}=
{P1, P3, PY). Therefore if K =3, KSP:;
is the optimal solution.

3.3 Dual Approach

The Breaking Inward Arc Method is useful for
a small-size K shortest paths problem, but for
big-size K shortest paths problem, this method
may not guarantee to solve in a reasonable time,
because it may be difficult to find out crossing
nodes and to expose hidden shortest paths in the
KSP;.

In order to check some crossing nodes and to
expose hidden shortest paths systematically, we
consider other algorithms in various aspects, and
we can couple a dual approach to this improve-
ment procedure.

Let 7 be the label value on node i of the
shortest path tree SPT (N1, At), which is T(s)
rooted at node s by Dijkstra method.

Then 7,=0

ri=min{z;+ci}, Vi€ N\s

Let I ={x1, 72, 7n)

Then IT is a dual vector and satisfies the

88

complimentary slackness condition (C. S. C) relat-
ed to SPT, and its dual are rewritten like below ;

TS witcey, VU jIEA »- (Dual Feasihility)
wj= it cy, VU, j) € Ap - (CS. Conditions)

Therefore, (i,j) € Ar = 7; < 7i+cjj
Generally, ¢;;, a reduced cost relative to SPT,
Is
cij =xitei-7;>0, on (i,]) & Ay

cii =0, on SPT (Ny, Ar)

Let a detouring incremental cost be LP
(SP(i, j)) ~ LP(SP({, j)), (i,j) A7 (i"j) € Ar
Because SP(i",j) is the shortest path passing
through IA(j,1) and SP(ij) is the path passing
through IA(j,a), where a =2. The length of a
shortest path SP(i",j), which passes through arc
(i"j), (" j)EAr is cij

length of a path SP(i,j) which passes an

shorter than the

inward arc (i,j) €Ar .
If ¢;;=0, then the arc(i,j) is an arc of SPT,
and is an arc of a path of KSP;.

Theorem 1. If ¢i;> 0, then c¢i; is a detouring
incremental cost
Proof. If ¢ij> 0, then the arc(i, j) is not any
arc of SPT, and
LP(SP(i,j))= xitcij+d;
LP(SP([",j)) = xj+ J
And then
LP(SP(i,j)) - LP(SP({",j))
=(ritcij+d)-—(x;j+ ;)
=it o T
= Cu
Therefore, ?,, IS a detouring incremen-

tal cost.

ot
ok
d

)

Let LP(HP(i, j,m)) be the length of a hidden
shortest path which detours through an inward
arc(i,j) and an outward arc(j,m), OA(, b), b=2
of a crossing node J.

And then, LP(SP(j, m))=LP(SP(r,j,m)),
(r,j) € Ar, SP(r,j,m) is a second or a next path
which passes through arc(r,j) in the KSP;.

Lemma 4 LP(HP(ijm))
= LP(SP(Gim))+ ¢;j, YjE Nr
Proof LP(HP(i,jm))= 7i+Cij* Cim* Om
=git(ciy*t 1j= i)+ Cim+ Om
= (/["J'+Cj'm+ é‘m)*’;[}'

LP(SP(j,m))+ ¢cij, Y(Gi.m)*0AG.1) (2.2)

I

Therefore, LP(HP(i,j, m) which passes th—
rough second or next inward arc(i, j) and second
or next outward arc(j,m) of CN; can be cal-
culated by equation (2,2) in case that <> 0.
That is, in order to expose hidden shortest paths,
it is needed to check the value of ¢;; of inward
arc (i,j) toward CNj;, and the value of LP(SP
(j,m)) on the all outward arc(j,m),V (jm) =
0A(j,1), then we can compute the value of LP
(HP(i, j,m).¥ (j,m)=OA(j1), by equation (2.2).

Lemma 5. If arc(i,j) is an arc of an exposed
hidden path, then LP(HP(i,j m)) =
i+ LP(SP(j,m)) < LP(P*%),

Proof Exposed hidden paths must be shorter
than P in the KSP,.
Then LP(HP(i,j,m))
=LP(SP(j,m))+ c;;< LP(P%).

Therefore, if ¢+ LP(SP(jm)) = LP(P%),
then HP(i,j,m) is not shorter than P% and it

#5ARyRe) Aze A 89

i1s not exposed.

Let LP(HP(i, j,m’) = minnm A\LP(HP (i, j,m))},
Y (j,m) % OA(j,1), the exposed hidden path can
be produced in a method of joining FP(s,(i,j))
and FP¢(j,m")t), which is the spur of HP(r,
jom).

But this equation (2.2) can not easily be applied
to a KSP; which have cross arcs and cross
subpaths, because the outward arc is only one
in KSP; and arc(jm) € Ar. We can't calculate
and check the hidden paths which detour through
inward arc(i,j),¥1, and outward subpath(j,m,n
), Vn.

So, we find out all apparent paths HP(r,j,m
), ¥V (j,m)* OA(j,1), whichpass CNjin KSP;and
their length LP(HP(r,j,m)), and then calculate
the length of detouring hidden paths, LP(HP(i,j,
m J)) by equation (2.2), after then choose
detouring hidden paths, HP(i,j,m), which are
shorter than LP(P%), and replace P% and some
paths by HP(i,jym).

Lemma 6, In this improvement dlgorithm, If ¢ij =
LP(PY)~LP (P')N(i, j) & Ar, the
present KSP; is the optimal solution
(KSP").

Proof In the case that ¢ij = LP(P%) - LP(P%)
then, LP(HP(i,j,m)) = LP(SP(j,m)
v cy>LP(PY)+ ¢y 2 LP(PY), for
LP(SP(j,m)) > LP(P"). Therefore, if
¢ 2LP(PY)-LP(P)), V(i j)e&
Ar, the present KSP; is the optimal

condition.

When we need to check inward arcs of a cross-
ing node to expose a hidden path , the above three
lemmas are useful to reduce the number of com-

putational iteration.

Let arc(r,q) be IA(q,1) of CN,, and arc(p,
g) be IA(q,2) of CNy, and also there are some
inward arc(i,q),V [Figure 6].

[Figure 6] Arcs of candidate exposed paths

Lemma 7. If LP(HP(p,g,m)) > LP(P"%), then
LP(HP(i,q,m)) = LP(P%)Vi

Proof. LP(HP(p,q,m))=LP(SP(qm))+ cp,,
and LP(HP(i,q,m)) = LP(SP(qm))+ ¢
owVi Let GAP = ciy - ¢po,Vi. Then arc
(p,q) is IA(q,2) of CN,, so LP(HP (p,
g,m)) is GAP shorter than LP(HP(i,q,
m)). Therefore if LF(HP(p,q,m)) = LP
(P%), then LP(HP(i,q,m)) = LP(P%)),
Vi

Therefore, if LP (HP (p,q,m)) = LP (P%),
there is no more candidate hidden path passing
through CN,, which can enter into the KSP; .

In order to get the optimal solution KSP~ =
(P! P, PR,

1. Make the ascending order set LIST of (¢;;),
¥j € IN, which are 0< ¢;; < LP(P%)-LP
(P'), in the KSP;.

2. Find out arc(p,q) whose c¢p, = min (¢;;) > 0,
and arc(r,q) € Ar in the KSP,,

3. Find out paths HP(r,qm),¥Ym, (r,q) € Ar in
the KSP,, which contains FP(1,q).

90

4. Yf LP(HP (r,q,m)) + cpy < LP(P"%), then
we expose new shortest path HP(p,q,m) with
joining FP(1,(p,q)) and FP((q,m),t). Other-
wise go to 2 , and select next cp,. FP(I,
(p,q)) is a forepart of the chosen path FP(1,
(p,q)t), and FP((qm),t) is a spur part of
HP(r,q,m).

5. HP(p,q,m) replaces Pli, and rearrange paths
of KSP, in the ascending order of its length
in order to get KSP;.,.

6. We should repeat the above routine till LIST
of ¢;; > 0is empty, or there is not any hidden

path shorter than P,

In case that K may be more or less larger than
the number of shortest paths which we can get
in the initial solution, in the improvement
procedure we can add some exposed hidden
paths, and get K shortest paths.

In the optimal condition, we can reach one of

the following cases in the KSP;,

Case 1; cpg = LP(PY) - LP(P') ¥(p,q).
*That is, (LP(HP (r,q,m))+ cpq) =
P
* All of the exposed paths are longer
than P%.
Case 2 ; There is not any crossing node till the
(K-1) th path.
= Each node is appeared at most two
times or only same inward arcs are
appeared several times.
*There is no intersection node in
KSP;.
Case 3; LIST of (cy) >0 is empty.
Case 4 K =3

ol
ok,
o

=

4. New K Shortest Paths Al-
gorithm

We focus on the K shortest paths problems in
a directed network that may contain positive
length arcs. Our goal 1s to provide a new al-
gorithm that globally sharp for these problems.
This method, which we call KSP-DSA, may

be described as follows.

4.1 KSP-DSA

Step 0. Initialization.

Given a network G =(N,A), input the
network structure and distance data.
I=1, KSPi= ¢.

Step 1. Produce T(s) and T(t) with the Dijkstra
method, and let them be merged and
make DSA, T(s,t).

Step 2. Compute SP(u,v) and LP(SP(u,v))V
(u,v) €A, and select K shortest paths in
ascending order of LP(SP(u,v)) from
T(s,t).

KSP= (P, P%,~ Ph).
If K <3, then KSP; is the optimal solu-
tion set. STOP.

Step 3. Calculate (¢;;), which is j €N, (i, j) €
KSP;.

CiECit i~ T,
Step 4. Make LIST of inward arc (1,7) which has
¢y 0< ¢y <LP(PX)-LP(P'), and
arrange arc (i,j) in ascending order.

Step 5. Check the possibility for improvement.

1. IF LIST = ¢, then STOP.
KSP, is optimal.
2. Select a next cy in the LIST,
LIST = LIST - (i,),

B3 2e] e Ay 91

Ji=1

Cpy= Cij

Step 6. Expose the hidden detouring paths and

improve present solution.

1. Pick out all paths which contain arc
(r,q), (r,qg) € Ar in the KSP;, ex-
cepting the shortest one and P k
— HP(r,q,m), ¥Y{(q,m) € KSP,.

2.Choose JJ-th shortest path HP (rg,
m*), whose length is (LP{HP(r,q,m*

improve KSP;, in step 5, requires at most
O(n), and in step 6, requires O(Kn) to
find out all paths containing arc (r,q) in
present K shortest paths and requires at
most O(n) to expose hidden paths. We
need to repeat the improvement proce-
dure at most n times because one node
among interaction nodes should be che-
cked if it is passed by a hidden path
Therefore the total complexity bound is

O(K n") in this algorithm as follows ;
O(n")+ O(n”)+ O(n) + ()0 (n)
+O(Kn)+0(n)) = 0(Kn®).

)+ Cp) <LP(P%), and JJ=J]+1.
Otherwise, go to step 6-5.

3. Expose hidden shortest paths HP (p,
g,m’) by joining FP(1,(p,q)) and FP
((q,m'),t), the spur of HP(r,q,m).

4. Replace P by HP(p,qm’), and make

and rearrange KSP;.; in ascend-

In the case of K < 3, this algorithm works
within time complexity O(n 7). because the im-

provement procedure {step 3~6) is not required

] and the initial solution, KSP;, is optimal.
ing order,

and /=/+1, and go to step 6-2.

5 If JJ=1, then remove ci, Vi from
LIST, and arrange LIST.
Otherwise remove only cpq from
LIST.
Then go to step 5-1,

5. Application

To see how the algorithm KSP-DSA works,
we consider an example network given in (Figure
1], where the T(s), T(t), and T{s,t) of the net-
work has been shown.

We will solve the K = 10 shortest path problem
of the network in the [Figure 1].

Lemma 8 KSP-DSA is an algorithm with com-
plexity O(Kn') .

Proof The major operations required by the new
Step 0. Initialization

Input G=(N,A), 1= 1
IN=(3, 4, 5, 6}

algorithm is as follows. For the computa-
tional complexities in step 1 ~ step 4, to
make T(s,t) is required O(n”) because the

complexity for Dijkstra algorithm is at Step 1. Produce T'(s,t) like in [Figure 1].

2 .
most O(n”), to compute SP(u,v) and to Step 2. Compute and select 10 shortest paths

select K shortest path in ascending order from T(s.t).

is O(n°), to compute (¢;) ,¥(i,j) and Pl 1-3-4-7-8 LP(Ph) =20
to check 0< ¢ < LP(P%) - LP(P%) and PY 1 1-4-7-8, LP(PY) =22
to arrange in ascending order is O(n). To Py i 1-3-7-8, LP(PY) =2

92

o
ok
d

3

P :1-3-4-6-8, LP(P%) =30
P’ 1 1-2-6-8, LP(P") =33
P% :1-3-5-8, LP(P') =3
P’ 1 1-2-4-7-8, LP(P')=35
P :1-3-46-5-8, LP(P%)=3
pP%:1-3458 LP(P1)=38

P :1-2-3-4-7-8, LP(P")=38

Step 3. Calculate (¢i;), j € IN, (i,j) € KSP.
CiECH T T
c14=2 ce5=2 cu%=3, cx:i=4, cua=15

Node 7 & IN.

Step 4. List (¢;j), 0< ci; <LP(P%)-LP(PY),
and arrange in ascending order.
LP(P%)-LP(P})=38-20=18

LIST=1{(1,4), (6,5), (2,6), (2,4)].

(Iteration 1)

step D. Checking the improvement.

2. cu=2 LIST={(6,5), (2,6), (2,4)).
JI=1
(p,q)=(1,4).

step 6. Expose a hidden detouring path.

1. (r,g) = (34), Pick out paths containing
arc(3,4).

h—
Path No. . LpP .
JJ in KSP, Route (P Remark

20 Excepting

1 ~3-4-7-8

P 1-3-4-7-8 the shortest.
1 P 1-3-4-6-8 | 30
2 PY |1-34658| %6

9 oA . Excepting
P 1-3-4-58 3 the longest.

2. Choose P =HP (3,4,6).
LP(P%)+ c1u=30+2=32<38.
JI=2

3. Expose HP(14,6) by joining FP (1,
(1,4)) and FP((4 6).8)
HP(1,4.6) = EP: 1-4-6-8, LP(EP) = 2.

4. Improve present solution ; KSP»

Ph:1-34-7-8 LP(P%)=20
P 1-4-7-8, LP(P%)=22
Ph:1-3-7-8, LP(P%)=24
PY:1-3-46-8 LP(P%)=30
P 1-4-6-8, LP(P%)=32
P 1-2-6-8, LP(P%)=233
P 1-3-5-8, LP(P%) =34
pPY%:1-2-4-7-8 LP(P%)=35
P%:1-3-4-6-5-8, LP(P%)=36
P":1-345-8 LP(P"%)=38

Then go to step 6-2.
2. Choose JJ =2, P = HP(3,4,6).
LP(P%)+ cu=36+2=38
= LP(P")).
Go to step 6-5.
5. JJ =2, then go to step b-1.
(Iteration 2)
step 5. Checking the improvement.
2. ces=2 LIST={(2,6), (2,4)}.
JI=1
(p,g) = (6,5).
step 6. Expose a hidden detouring path.
1. (r,q) =(3,5), Pick out paths containing
arc(3,5).

Path No. LP
1/ in KSP, Route (P Remark

Excepting
the shortest.

| P’ 1-358 | H

4. JJ =1, then remove cu5, Vp,
and go to step 5-1.
(Iteration 3)
step 5. Checking the improvement.
2. ¢co=3 LIST={(24)}
JJ=1
(p,g)=(26).
step 6. Expose a hidden detouring path.
1. (r,q) =(4,6), Pick out paths contain-

BaAgdze] Az Hay 93

O N R S SR RN

ing arc(4,6).

Path No. . LP]
J s KSP) Route | (5)| Remark

54 2 A . Excepting
Py |lI8468 % the shortest.

1 Py |1-3-456-8) %

3. Choose P%=HP(4,6,5).
LP(PY)+ cx=36+3=39>38
Then go to 6-4.
4. JJ =1, then remove c¢s, Vp, and go
to step 5-1.
(Iteration 4)
step 5. Checking the improvement.
2. cu=15, LIST = { 8},
JI=1
(p,g)=(2,4).
step 6. Expose a hidden detouring path.
1. (r,g) = (34), Pick out paths containing

arc(34).
Path No. X Le .
1 in KSP, Route (P Remark
51 247 . Excepting
s 1-34-7-8 X the shortest.
1 P 1-3-4-6-8 30
21 P% [1-34658| %
1w s Excepting
Pl (13458 | 38 the longest.

2. Choose P%=SP(3,4,6).
LP(Ph)+ cu=30+15=45> LP(P")
Then go to step 6-4.
4, JJ =1, then remove c¢p4, ¥p, and go
to step 5-1.
(Iteration 5)
step 5. Checking the improvement.
1. LIST =4, then KSP> is optimal.
STOP.
The optimal solution KSP”

P 1-3-4-7-8, LP(P")=20

P 1-4-7-8, LP(P”") =22
P 1-3-7-8, LP(P")=24

P 1-3-4-6-8, LP(P")=30
P™1-4-6-8, LP(P”)=32
P™:1-2-6-8 LP(P%)=33
P™1-3-5-8, LP(P™) =34
P¥ 1 1-2-4-7-8, LP(P”)=35
P": 1-3-4-6-5-8 LP(P")=36
P 1-3-4-5-8, LP(P"")=38

6. Future Research

This paper presents a new algorithm for K
Shortest Paths Problem which has time comple-
xity O(Kn~). Especially in the case of K < 3,
this algorithm works within time complexity
0 (n).

In this algorithm we can make an initial
solution with K paths among shortest paths
from s to ¢ through each node, and improve and
reach an optimal solution with dual approach

which gets detouring incremental distance, ¢;;,

and applies a concept of breaking inward arcs,
merging subpath, and exposing hidden shortest
paths around crossing nodes.

In the near future, all pair of K shortest paths
problem algorithm development and numerical
comparisons will be the aim of our research for
the application in the real fields like as ITS
{Intelligent Transport Systems), transportation
planning analysis, and transportation goods
through a distribution network in the logistics
management, telecommunications , VLSI design

[9] and so on.

94 =

g

S0 S SN T

REFERENCES

[1] Ahuja, RK., T.L. Magnanti, and J.B. Orlin,
Network Flows, Prentice Hall, Englewood
Cliffs, NJ, 1993.

[2] Chang, B.M., A study on the new algorithm
for K shortest paths problem, Korean Man-
agement Science Review, 15, 2(1998), pp.
229-231.

[3] Dijkstra, EZW., A note on two problems in
connection with graphs, Numerische Mathe-
matik, 1(1959), pp.269-271.

[4] Dreyfus, S., An appraisal of some shortest
path algorithms, Oper Res, 17, 2(1969), pp.
395-412.

[5] Eppstein, D., Finding the K shortest paths,
SIAM J. Comput., 28, 2 (1998), pp.652-673.

[6] Glover, F., R. Glover, and D. Klingman, Com-
putational study of an improved shortest
path algorithm, Networks, 14 (1984), pp.25-36.

[7] Hadjiconstantinou, E., and N. Christofides,
An efficient implementation of an algorithm
for finding K shortest paths, Networks, 34
(1999), pp.88-101.

[8] Katoh, N., T. Ibaraki, and H. Mine, An effi-

cient algorithm for K shortest simple paths,
Networks, 12(1982), pp.411-427.

(9] Lalgudi, K.N. and M.C. Papaefthymiou, Com-
puting strictly-second shortest paths, Infor-
mation Processing Letters, 63 (1997), pp.
177-181.

[10] Lawler, E., A procedure for computing the
K best solutions to discrete optimization
problems and its application to the shortest
path problem, Management Sci, 18, 7(1972),
pp.401~405.

{11] Lawler, E., Combinatorial Optimization :
Networks and Matroids, Holt Reinhart and
Winston, New York, 1976.

[12] Shier, D., On algorithm for finding the K
shortest paths in a network, Networks, 9
(1979), pp.195-214.

[13] Yen,]. Finding the K shortest loopless
paths in a network, Management Sci, 17
(1971), pp.712-716.

(14]) Ziliaskopoulos, A., D. Kotzinos, and H. Mah-
massani, Design and implementation of pa-
rallel time-dependent least time path algori-
thm for intelligent transportation systems
applications, Transportation Res-C, 5, 2
(1997), pp.95-107.

