Talbot imaging of periodic amplitude objects and its visibility

주기적인 진폭격자들에 의한 Talbot 결상 및 가시도 분석

  • Kim, Young-Ran (Applied Optics and Electromagnetics, School of Natural Scieces, Hannam University) ;
  • lee, Seung-Bok (Applied Optics and Electromagnetics, School of Natural Scieces, Hannam University) ;
  • Jo, jae-Heung (Applied Optics and Electromagnetics, School of Natural Scieces, Hannam University) ;
  • Chang, Soo (Applied Optics and Electromagnetics, School of Natural Scieces, Hannam University) ;
  • Rim, Cheon-Seog (Applied Optics and Electromagnetics, School of Natural Scieces, Hannam University)
  • 김영란 (한남대학교 자연과학부 광.전자물리학 전공) ;
  • 이승복 (한남대학교 자연과학부 광.전자물리학 전공) ;
  • 조재흥 (한남대학교 자연과학부 광.전자물리학 전공) ;
  • 장수 (한남대학교 자연과학부 광.전자물리학 전공) ;
  • 임천석 (한남대학교 자연과학부 광.전자물리학 전공)
  • Published : 2001.04.01

Abstract

The Talbot effect for periodic objects with the spatial period p illuminated by expanded coherent light is analyzed by Fresnel diffraction theory, and the Talbot distance (Zr) at which we can observe 1: 1 imaging without any lenses can be defined. We confmned experimentally the Talbot imaging of line, circular, X -type and '||'&'||'copy;-type 2 dimensional alTay gratings at ZT. At the same time, we observed phase reversed Talbot imaging at Zr/2 and Talbot subimage with p/2 at Zr/4 and 3Zr/4. The visibility of Talbot images as a function of the number of slits of the input grating was measured by the FFf (Fast Fourier Transform) results of these images. As a result stationary maximum visibility of V = 0.25 was obtained from grating numbers with more than 15 slit pairs.

주기적인 진폭물체를 가간섭광인 레이저광으로 조명하였을 때 이 물체가 렌즈없이 회절에 의하여 결상되는 Talbot 결상을 회절이론으로 해석하고 물체의 상이 1:1로 결상되는 Talbot 거리(Zr)를 정의 하였다. 그리고 실험적으로 이 Z/sub T//2 위치에서는 위상에서는 위상이 반전되는 현상도 동시에 관찰하였다. 이러한 Talbot 결상시 주기적인 물체의 개수, 즉 격자의 수에 따라 Talbot 상의 가시도를 Talbot 상의 FFT(Fast Fourier Transform)로부터 측정하였으며 그 결과 적어도 15개 이상의 격자들로 구성되어야 가시도 0.25로 정상적인(stationary) Talbot 결상이 됨을 알 수 있었다.

Keywords

References

  1. Handbook of The Moire Fringe Technique K. Patorski;M. Kujawinska
  2. Progress in Optics XXVII The Self-Imaging Phenomenon And Its Application K. Patorski;E. Wolf(ed.)
  3. J. Opt. Soc. Am. v.57 no.6 Self-imaging objects of infinite aperture W. D. Montgomery
  4. Opt. Commun. v.43 no.4 Acoustically modified optical Fresnel diffraction by a slit and a periodic object in relation to periodic partial coherence Y. Imai;Y. Ohtsuka
  5. Opt. Commun. v.129 Talbot effect for oblique angle of light propagation M. Testorf;J. Jahns;N. A. Khilo;A. M. Goncharenko
  6. Opt. Commun. v.56 no.6 Image synthesis using self imaging B. Packoss;R. Eschbach;O. Bryngdahl
  7. Opt. Eng. v.14 no.5 Optical image subtraction J. F. Ebersole
  8. J. Opt. Soc. Am. v.63 no.4 Image formation using self-imaging techniques O. Bryngdahl
  9. Opt. Commun. v.55 no.2 Application of self-imaging to the production of gratings with asymmetrical groove profile Z. Jaroszawicz;A. Kolodziejczyk
  10. Opt. Commun. v.56 no.4 Observation of Fourier images in soft X-ray radiation V. V. Aristov;S. Aoki;A. I. Erko;S. Kiluta;V. V. Martynov
  11. Opt. Lett. v.11 no.10 Quadrature outputs from fiber interferometer with 4×4 coupler T. H. Niemeier;R. Ulrich
  12. Opt. Commun. v.45 no.5 Talbot interferometry with a vibrating phase object H. Kaijun;J. Jahns;A. W. Lohann
  13. Appl. Opt. v.11 no.11 Photolithographic mask alignment using Moire techniques M. C. King;D. H. Berry
  14. Optik v.79 no.1 An array illuminator based on the Talboteffect A. W. Lohmann
  15. Appl. Opt. v.23 no.10 Real-time depth measurement and display using Fresnel diffraction and white-light processing J. R. Leger;M. A. Snyder
  16. Introduction to Fourier Optics(2nd ed.) J. W. Googman