Low-temperature Aqueous Oxidation of Titanomagnetites: Changes in Magnetic Properties of Pseudo-single Domain Particles

위단지구 티탄자철석의 수성 저온산화에 따른 자성변화

  • 석동우 (한양대학교 지구해양과학과)
  • Published : 2001.02.01

Abstract

Titanomagnetites, the primary magnetic mineral in submarine basalts, generally has undergone some degree of low temperature oxidation to cation-deficient titanomaghemites. Synthetic analogues of natural titanomaghemite have been prepared by the removal of iron mechanism employing a low-temperature aqueous oxidation method. Along with the low-temperature oxidation of titanomagnetite, magnetic properties of titanomagnetite change sensitively. The results show that as the degree of oxidation increases, the Curie temperature (Tc) increases from $166^{\circ}C$ to $400^{\circ}C$, saturation magnetization (Ms) at room temperature decreases from 126.30 kAlm (25.26 emu/g) to 16.55 kAlrn (3.31 emu/g) monotonously, and coercive force (Hc) and coercivity of remanence (Hcr) increase from 6.13 kAlm (77 Oe) and 23.24 kAlm (292 Oe) to 38.83 kNm (488 Oe) and 47.03 kAlm (591 Oe), respectively. Low field susceptibility (X) decreases from $2023{\times}10^{-6}SI$ to $84{\times}10^{-6}S1$. Based on the results of this study, it is interpreted that the NRM intensity variations of the oceanic crust of presetnt day to 30 Ma is due to the formation of titanomahemites of various degree of oxidation by the low-temperature aqueous oxidation of titanomagnetite, while the magnetic intensity changes of the oceanic crust older than 30 Ma is presumably caused by the combined effect of the formation of titanomaghemites and subsequent inversion of titanomagnemites. DetaileJ causes of the variations of NRM intensity of the oceanic crust may be revealed by systematic studies of the oceanic-floor basalts in the future.

티탄자철석(titanomagnetite)은 해양지각을 이루는 현무암에 존재하는 중요한 자성광물로서 일반적으로 저온산화에 의해 양이온이 결핍된(cation-deficient) 티탄맥히마이트(titanomaghemite)로 변한다. 실험실에서 철성분 제거방식(removal of iron mechanism)을 통해 자연에서 일어나는 티탄자철석의 수성 저온산화(low-temperature aqueous oxidation)를 재현하였으며, 산화정도에 따라 티탄맥히마이트의 자기적 특성이 민감하게 변화하는 것을 관찰하였다. 본 실험 결과 산화정도에 따라 티탄자철석의 큐리온도(Tc)는 166$^{\circ}C$에서 40$0^{\circ}C$로 증가하였고, 상온에서의 포화자화 강도(Ms)는 126.30 kA/m(25.26 emu/g)에서 16.55 kA/m(3.31 emu/g)로 감소하였으며, 항자기력(Hc)은 6.13 kA/m(77 Oe)에서 38.83 kA/m (488 Oe)로 잔류항자기력(Hcr)은 23.24 kA/m(292 Oe)에서 47.03 kA/m(591 Oe)로 증가함을 관찰하였다. 또한 대자율($\chi$)은 $2023{\times}10^{-6}SI$에서 $84{\times}10^{-6}SI$로 감소함을 나타내었다. 이와 같은 결과를 근거로 현재에서 30 Ma까지의 해양지각의 자화 강도의 변화는 티탄자철석의 저온산화에 의한 결과로 해석하였으며 30~120 Ma에 이르는 해양지각의 자화 강도의 변화는 해양지각에 포함된 티탄자철석의 산화와 산화에 순반되는 광물전에 의한 결과로 추정하였으며 보다 구체적인 원인은 해양지각에서 채취한 시료에 대한 체계적인 연구를 통해서 밝혀질 것으로 기대된다.

Keywords

References

  1. Geophys. res. Lett. v.11 Magnetic properties of variably oxidizing pillow basalt Beske-Dihel, S.;sokora, W.L.
  2. Nature v.301 Variations in magnrtization intensity and low temperature titanomagnetite oxidation of ocean floor basalt Bleil, U.;Peterson, N.
  3. Phys. Earth Planet. Int. v.13 Hysteresis properties of titanomagnetic: grain size and compositional dependence Day, R.;Fuller, M.;Schmidt, V.A.
  4. Bulletin of Earth and Mineral sciences Experimental Station no.88 temperature-oxygen fugacity tables for selected gas mixture in the system C-H-O at atmosphere total pressure Deines, P.;Nafziger, R.H.;Ulmer, G.C.;Woermann, E.
  5. Contrib. mineral. Petrol. v.53 Hydrothermal processes along midocean ridges: An experimental investigation Hajash, A.
  6. In Initial Rep. Deep Sea Drilling Proj. v.51, 52, 53 Magnetic properities of basalt samples from Deep Sea Drilling Project hotels 417D and 418A Hamono, Y.;Nishitani, T.;Kono, M.
  7. Rev. Geophys. Space Phys. v.17 Magnetization of the ocean crust Jhonson, P.
  8. Geol. soc. Am. Bull. v.88 Magnetic study of basalt from the Mid-Atlantic Ridge, lat. 37 N. Jhonson, P.;Atwater, t.
  9. Earth Planet. Sci. Lett. v.47 Theoretical grain size limits for ingle domain, pseudo-single domain and multidomain behavior in titanomagnetic (x=0.6) as a fuction of low temperature oxidation Moskowitz, B.M.
  10. Earth Planet. Sci. Lett. v.53 Method for estimating Curie temperature of titanomaghemite from experimental js-T data Moskowitz, B.M.
  11. J. Geophys. Res. v.86 no.B12 A comparison of the magnetic properties of synthetic titanomaghemites and some oceanic basalts Moskowitz, B.M.;Banerjee, S.K.
  12. Subseafloor hydrothermal systems: rock vs. seawater domonated , in Hydrothermal Systems Mottl, M.J.;Seyfried, W.E.;Rona, P.A.(ed.);Lowell, R.D.(ed.)
  13. Rock magnetism and paleogeophysics v.6 Graun size effect on the low-tem-perature oxidation of titanomagnetite Nishitani, T.
  14. Earth Planet. Sci. Lett. v.34 Monodomain behavior in multiphase oxidized titanomagenetite O'Donovan, J.B.;O'Reilly, W.
  15. Phys. Earth Planet. Int. v.31 The identification of titanomaghemites; model machanism for the maghemitization and inverion processes and their magnetic consequences O'Reilly, W.
  16. J. Geophys. v.49 laboratory systhesis of aluminium-substitued titanomagnetites and their characteristics properities Ozdemir, O.;O'reilly, W.
  17. Phys. Earth Planet. Int. v.25 High temperature hystersis and other magnetic properties of synthetic monodomain titanomagnetite Ozdemir, O.;O'Reiily, W.
  18. J. Geophys. Res. v.76 Magnetic properties of synthesized titanomaghemite Ozima, M.;Sakamoto, N.
  19. J. Geophys. Res. v.86 Magnetic effects of maghemitization of ocean crust Prevot, M.;Lacaille, A.;Mankinen, E.A.
  20. Phys. Earth Planet. Int. v.16 Tiatanomagnetite prepared at differnce oxidation conditions: hystersis properties Rahaman, A.A.;parry, L.G.
  21. phys. Earth planet. Int. v.4 The synthesis and inversion of non-ctoichometric titanomagnetites Readman, P.W.;O'Reilly, W.
  22. J. Geomag. Geoelec. v.24 Magnetic properties of oxidized (cation deficient0 titanomagnetites Readman, P.W.;O'Reilly, W.
  23. Geochim. cosmochim. acta. v.46 Hydrothermal alteration of basalt by seawater-dominated conditions Seyfried, W.E.;Mottl, M.J.
  24. The Physical Principles of Rock Magnetism Stacey, F.D.;Banerjee, S.K.
  25. Phil. Mag. v.25 Spontaneous magnetization curves and curie points of spinels containing two types of magnetic ion Stephson, A.
  26. J. Geol. v.84 Hydrothermal circulation and geochemical flux at mid-ocean ridges Wolery, T.J.;Sleep, N.H.
  27. Geophys. Res. Lett. v.11 Aqueous low-temperature oxidation of titanomagnetite Worm, H.U.;Banerjee, S.K.
  28. Geology v.27 Preservation of pristine titanomagnetite in older oceanfloor basalt and its significance for paleointensity studies Zhou, W.;Van der Voo, R.;Peacor, D.R.
  29. Earth Planet.Sci. Lett. v.179 Variable ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB Zhou, W.;Van der Voo, R;Peacor, D.R.;zhang, Y.
  30. J. Geophys. v.50 Grain size effect on the low-temperature oxidation of titanomagnetite Nishitani, T.;Kono, M.
  31. J. Geophys. Res. v.86 An experimental study of magnetic viscocity in synthetic monodomain titanomaghemite Ozdemir, O.;Banerjee, S.K.
  32. Earth Planet. Sci. Lett. v.57 Magnetic hysteresis properties of synthetic monodomain titanomaghemites Ozdemir, O.;O'Reilly, W.