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Abstract : Statistical reconstruction methods in the context of a Bayesian framewcrk have played an important role in
emission tomography since they allow to incorporate a prierf information inte the reconstruction algorithm. Given the ill-posed
nature of tomographic inversion and the poor quality of projection data, the Bavesian approach uses regularizers to stabilize
solutions by incerporating suitable prier models. In this work we show that, while the gquantitative performance of the
standard filtered backprojection (FBP} algorithm is not as good as that of Bavesian methods, the application of
spline-regularized smoothing to the sinogram space can make the FBP algorithm improve its performance by inheriling the
advantages of using the spline priors in Bayesian methods. We first show how to implement the spline-regularized smoothing
filter by deriving mathematical relationship between the regularization and the lowpass filtering. We then compare
quantitative performance of our new FBP algorithms using the quantitation of bias/variance and the total squared error (TSE)
measured over noise trials. Our numerical results show that the second-order spline filter applied to FBP yields the best
results in terms of TSE among the three different spline orders considered in our experiments,
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Introduction factors, it has been a difficult problem to reconstruct

images with good accuracy.

The objective of emission computed tomography (ECT)
is to determine the three-dimensional (3-D) distribution of
radicnuclide concentrations within the body using two-
dimensional (2-D) projectional views acquired at many
different angles about the patient. Therefore, the recon-
struction problem in ECT is to compute the distribution
of a radionuclide in a given cross section of the human
body from the projection measurements. Unfortunately,
since the ohserved data in ECT systems are contaminated
by noise due to low count tate and several physical
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Over the last decade, statistical reconstruction methods
[1-8] have enjoyed considerable interest for image
reconstruction in ECT since they can accurately model
the Poisson noise associated with gamma-ray projection
data. In particular, maximum a posteriori (MAP) appro-
aches in the context of a Bayesian framework have been
a topic of interest since they allow to incorporate a priori
information into the reconstruction algorithm. Given the
ill-posed nature of tomographic inversion and the poor
quality of projection data, Bayesian approaches use regu-
larizers to stabilize solutions by incorporating suitable
prior models, which reflect assumptions about the spatial
properties of the underlying source distribution. Early
methods foeused on the regularization of the unstable
maximum likelihood (ML) algorithm [1]. Later, the
Bayesian approach was also viewed ag a4 means of
incorporating actual, known information regarding the
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local spatial character of the source. A host of different
formulations to model the Bayesian priors have heen
proposed in the literature [2-7); some of these implicitly
model the underlying radionuclide density as globally
smoath [6], and others extend the smoothness model by
allowing for spatial discontinuities [2-5,7].

Conventional smoothing priors use quadratic penalties,
which are mathematically simple and lead to an algorithm
whose solution is easier to compute. However, the
conventional quadratic prior, such as the membrane prior,
tends to oversmooth discontinuities and incur large hias
error. To overcome this problem, we introduced a simple
modification of the membrane (MM) pricr to one less
sensitive to variations in first spatial derivatives - the
thin plate (TP) [6], in which Gibbs potentials were
applied to spatial second derivative terms better able to
model gradual transition regions that separate anatomical
boundaries. When the performance of TP was compared
with that of MM in terms of quantitation of bias and
variance over noise trials using the Monte Carlo method,
the TP prior yielded improved reconstruction in the sense
of low bias at little change in variance {8]. It was also
observed that the wuse of the TP prior revealed
considerably less sensitivity in bias to the variations of
smoothing parameter than the MM prior [8].

In this work we note that, while deterministic appro-
aches, such as the filtered backprojection (FBP) method,
do not provide as accurate reconstructions as Bavesian
methods, the application of spline-regularized smoothing
to the sinogram space may lead to quantitatively impro-
ved results in FBP reconstruction which is widely used
in clinical practice. In this case we may expect the well-
known advantages of using the higher-order spline modet
{561 (e.g., the TP pror) in the deterministic FBP method.

In this paper, we first mathematicaily characterize the
relationship between the regularization in Bayesian methods
and the lowpass filtering in Fourier-based deterministic
methods, and then derive a general form of the nth order
angle-independent apodizing filters for FBP reconstruction,
which is derived from the nth order smoothing spline
models used as priors in Bayesian methods. The
remainder of this paper briefly overviews the FBP method
in ECT reconstruction, develop a new FBP algorithm
with spline-regularized smoothing filters, and presents the
results from numerical studies and experiments.

Reconstruction from Projections
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Since the physical processes underlyving eraission
tomography are complex, a deterministic solution may not
be possible without simplifying assumptions. In the
simplest case, the prolection can be expressed as a simple
line integral or ray sum of the activity distrbutior: along
a line which passes through the object. For a 2-D
distribution Ax,3) on a single cross—sectional plane, the
mathematical expression for the line integral at an

arbitrary angle & is given by
gikd= [ [ Az »olxcos 0+ ysino—dsdy, (D

where g8 is the ray sum along the line which passes
through the object and reaches detector ¢ Note that
gy is a function of ¢ and defines the parallel

projection of Ax, ) for angle &

A solution of Eq. {1} can be obtained by Fourier slice
theorem [9] which relates the one-dimensional (1-D)
Fourier transform of a projection of a function Ax,y) to
the 2-D Fourier transform of fx, v):

F(Es’?)l E=mcns@.a=casin6:G.9(w)a (2)

where,

Fen= [ [ Az s)exp(—2in(ge-+ n)dsdy

and

Glw)= f _mmga( 1 exp(— Zrwi)d:.

In BEq. (2) F&ED cmwcmbomasme 15 the 2-D Fourier
transform of Ax, ) evaluated along the line at mngle &,
and G #{w) is the 1-D Fourier transform of g4 {#. If the
projections spanned all values of ¢ and &, the function
Ax, 3 could be reconstructed by taking the Inverse
Fourier transform of F{& 7). In this case, a solution of
Eq. (1) is given by

Ax = fong(xcos 8+ ysin 8)d8, (3)
where
QD= [ _Gulw)lwlexp(Zrundo 4)

Note that Q48 in Eq. (4) is the 1-D inverse Fourier

transform of which is the 1-D Fourier transform
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G w)w| of the projection g, filtered by the ramp
filter |w|. In other words, @4 (# is- identified as a
“filtered projection”. Since any physical system in practice
has a practical high-frequency limit, the filter used for
filtered projection in Eq. (4) is bandlimited.

Equation {3) can be interpreted in the following way:
Every point (x',»), which contributes to the filtered
projection @Q,(f) along a line, produces the same wvalue
of ¢ (=x"cosf@+y sind).
projection Qu(#) computed along the line makes the

Conversely, the filtered

same contribution to all points on the line. Therefore,
reconstruction of Ax,») from the projection ge{#) can be
obtained by “smearing” the filtered projection Q.(f) back

over the image plane. This reconstruction scheme is
identified as Filtered Backprojection (FBP).

Spline-Regularized Sinogram Smoothing

Regularization is & mathematical technique to solve
ill-posed problems whose solutions are unstable due to
insufficient constraints on the data [10]. The additional
constraints to stabilize solutions, termed as “stabilizers” or
“regularizers”, often take the form of smoothness
constraints on  possible  solutions. Most  common
approaches to regularization involve finding a minimum of
an objective function that consists of a measure of data
agreement and a regularizing functional to maike the
solution well behaved. Given a set of data f which we
wish to invert, we define an energy function Ep(fF)

which measures the closeness of the solution f to the
data £. We then add a stabilizing function Eg(f) for
smoothness constraints. The regualarization methods thus
seek an approximating f which minimizes the following
function:

E(f)=EL)+AEALS),

where A 1s a positive weight factor that balances
between energies E () and Ep(f). When E(f) is
small, 7 is a good compromise between the data
agreement and the smoothness.

Let us consider the pP-dimensional space. A common
form for the data agreement energy Ep(f} is usually
modeled as square error in the fit of Ax)} to the noisy

observation g{x):

Exf) = [[Rx)—a(x)Vdx

where f(x) and g(x) are defined on the p-dimensional
vector space, x=[x,,x,]. The general form of the
stabilizers Ep(f) represented by nth-order spline is given
by [11]

_ nl " fx) \
Ep(f)* f m.+---Z‘Flm,=n ml!-“mp! ( axlml...axr’) dx' (6)

where the value of n determines the order of continuity
of the solutions. In the 2-D case, for example, the
nth-order spline is reduced to

= [ [ B 1) LEeY ey

For the two lowest order cases { =1 and »=2), the
corresponding 2-D spline models are given by

Edpy= { [(f1+ 1D)dvdy %
and
Edf) = [ [(Fi+278+ fL)duay t)

for m=1 and »n=2, respectively. Based on the physical
interpretations in elasticity theory [11,12], these cases can
be explained in the following way. For =n=1, Eq. (7)
represents the small deflection energy of a “membrane”.
For #=2, Eq. (8 comresponds to the small deflection
bending energy of a “thin plate”.

Below, we investigate the mathematical relatienship
bhetween the regularization and the lowpass filtering. Since
regularizers typically take the form of space-invariant
smoothness constraints, we may regard the regularization
as smooth filtering or lowpass filtering with a
corresponding Fourier domain representation. To see the
spectral properties of energy function solutions, we may
use a Fourier analysis. The Fourier transform of a

multidimensional signal s{x) is defined by
+oo
)= T{s(x)}= f_m s{x)exp(— Prw * x)dx

and the Fourier transform of its partial derivative with

respect to the ith compoment of =z, x;, 1s given by

']{is‘;‘ll]=—]2ﬁ'k,8(w), {9}
x;
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where w; is the ith component of w. Using Parseval's

Theorem,
+ o + oo
[ Isoax= [__IS(a)ldw,
and Eq. (9), we may rewrite Eqs. (5) and (6) as

Esn=[ 1R etnfax= [ I F) - (o) do

and

2
dx

+ oo

Ep(f): f—m ml+--z;m,=n mlff!-m,,! ; ﬂx)

" "
dx) 0x,’

teo n! "y my z
=B | re) ™ (2re) ™ F(w)| da

tem 2n 2
= [, k™ I FCe)ak,

respectively. Hence, the overall energy E(f} is given
by.

B = f_’:'[ | F(@) — () + 2zl ™| F )] dew

= f_+:[(1 + iRzl F o)’ - 21 G(a)| F{ o) + | G(w)| 1ak

The above energy is minimum when Me)= Fo),

where F(@) is given by

Fla)y= Glw)

1
(1+A27al™)
Let Hlw)= Flw)/Gle). Then we have

Hw}= (100

1
Notice that Eq. (10) takes the form of a lowpass filter,
where A controls the bandwidth of the filter. The larger
the value of A, the narrower the filter bandwidth, thereby
weighting the smoothing effect more strongly.

It is important to point out here that the origin of the
above lowpass filter is in the nth-order smoothing spline
models described in Eq. (6} and that the filter may he
incorporated into the FBP algorithm in the form of a
simple linear apodizing filter. In the sinogram space, the
lowpass filtering is equivalent to taking a convolution
with the inverse Fourier transform of Eq. (10), which
eventually is equivalent to smoothing the sinogram using
the spline model specified in Eq. (6). In this case we may
expect similar effects of using the smoothing spline

o583 A - A2, M4E, 2001

models as priors in Bayesian methods.

Recall that, in FBP reconstruction, the filtered
projection QuH in Eq. (4) is the 1-D inverse Fourier
transform of Gylw)lw!, where the Fourier transiorm of
the projection, Gylw), is filtered by the ramp filer |l
In fact, since the filter in Eq. (4) is a convenient 3lace to
accomplish the overall system filtering in addition to the
basic |w| filtering, a wide variety of filter functions are
used in practice. These filters generally invoive the
product of |w| and a high-frequency apodizing filter in
corder to suppress the noise amplification i1 high
frequencies as well as to moderate the abrupt truncation
of the ramp filter which causes “ringing” at the edges in
the reconstructed image. In this paper, instead of using
conventional lowpass filters, such as Hamming or
Hanning windows, we combine the spline-regularized
smoothing filter described in Eq. (10) with the ramp filter.
In this case high-frequency apodization in FBP is
implemented in the Fourier domain of the projection data
using the angle-independent apodizing filters that -nultiply
the ramp filter. We also point out that unapodized FBP
reconstructions (A=10) were far worse than the apodized
versions in all cases, so no such results are reported.

Experimental Results

To test our idea of wusing the spline-regularized
smoothing filter for FBP reconstruction, we performed
2-D  simulation studies with projection data from
128x 128 digital phantoms, designated A and B for
convenience, with 128 projection angles over 180° and 128
detector bins at each projection. Phantom A (Fig. 1(a)) is
a digital Hoffman brain phantom with activity of 4:1:0 in
grey matter, white matter, and CSF, respzctively.
Phantom B (Fig. 1{h)} was derived from a digitized

{a) (b)

Fig. 1. Digital phantoms used in the experimenzs. (a)
Hoffman brain phantom A, (b) Autoradiograph phaitom B.
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rhesus monkey autoradiograph [13]. The motivation of
using such a phantom is based on our hypothesis that
biclogically realistic phantoms are useful in testing
reconstruction algorithms for emission tomography [5-8].

In this work, we compared quantitative performance of
the spline-regularized smoothing filters in Eq. (10} for
three different orders {z=1, 2, and 3). Since the results
from anecdotal, single-image comparisons are not convin-
cing in medical imaging, we evaluated the reconstructions
in an ensemble sense; we first generated 50 Monte Carlo
noise trials for each phantom by adding independent
realizations of Poisson noise to the noiseless projection
data. For each set of noisy projection data, we then
performed FBP reconstructions with the three different
spline orders. Since the quality of reconstructions depends
highly on the smoothing parameter A, instead of choosing
and fixing the value of A, we used a range of values; for
phantomn A, we used 4;=0.025x2%, and for phantom B,
A;=0.05x2", where =0, 1, 2,--,8. Thus the total
number of reconstructions performed for each phantom
was 1,350 (50 noise realizations, 9 values of A, 3 values
of n).

To evaluate the reconstructions quantitatively, we
computed bias and standard deviation (STD) images. A

{d)

hias image, by, is defined as
1
b=k 2745, a

where F% is the Ath reconstruction of phantom f at

location (7,77 and the summation is over K=350
independent noise trials. To display the bipolar bias
image, an intermediate grey scale value of 128 out of 256
levels was used as zerc bias. A standard deviation image,
55 1s defined as

Sv:\r Kl, i g(?’;— ) (12)

where f; is the mean of 7, over noise trials. We

also computed the total squared error (TSE) # defined
as

#= Xu}(b?ﬁ s, (13

which summarizes the hias and STD results.

Figure 2 shows anecdotal reconstructions for both
phantoms A and B, where (a}(d), (b)(e), and {c)(f) are for

(c)

(f)

Fig. 2. Anecdotal FBP reconstructions for phantoms A ((a)-(c)) and B {{d)-(f)). {8) =n=1. (b) ==2, {c) n=3. {d)

n=1.{e) n=2 (f) n=23.

J. Biomed. Eng. Res: Vol. 22, No. 4, 2001
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(d)

H

Fig. 3. Conventional FBP and Bavesian reconstructions for phantoms A ({(a)-(c)) and B ({(d)}-{f)). (a) FBP with Hanning
window (b) Bayesian with MM prior. (c) Bavesian with TP prior. (d} FBP with Hanning window. {e) Bayesian witn MM

prior. {f) Bavesian with TP prior.

n=1, 2, and 3, respectively. In Fig. 2 the value of 2
was chosen by finding the value that vielded the smallest
TSE over a range. Therefore, the images in Fig. 2 are
the best anecdotal results in terms of TSE. Close
inspection reveals that the reconstruction using »#=2
captures subtle aspects of each phantom better than other
cases (n=1 or 3). Comparisons of {a){d) to (c)(f) show
that increasing the spline order appears to increase the
degree of smoothness, This is presumably due to the fact
that, when viewed as a 2-D regularization problem, the
higher the differential order, the larger the number of
pixels participating in the regularization. For example,
while the membrane model (#=1) in Eq. (7) uses 4
nearest pixels, the thin plate model (x=2) in Eq. (8)
uses 12 nearest pixels. However, it is important to point
out here that the effect of increasing the spline order =
is different from that of increasing the value of A in that
changing the value of A does not change the number of
pixels in the neighborhood of a pixel to be updated. The
details on the cross effect due to A and # can be found
in the experimental results from our quantitative
performance test.

Since our smoothing filters are based on the spline
priors used for Bayesian methods and applied to FBP, for

el FehE]A] - 4229, 43, 2001

qualitative comparison purposes, we also include some
representative reconstructions obtained from the Bayesian
method with simple spline priors and a conventional FBP
reconstruction. As shown in Figs. 3(a) and (d), the
conventional FBP method, which uses a Hanning window
for high-frequency apodization, tends to oversmooth the
entire image area by ignoring local spatial characteristics
of the underlying source. On the other hand, it is clearly
shown in Figs. 3 (b), (c), (e}, and (f) that the Bayesian
method significantly improves the quality of recon-
structions. {The details on the quantitative performance of
the Bayesian method used for these results can be found
in our previous publications [6,8]) Note also that the
transitions from Figs. 3(b) and (e) to {(c) and {f),
respectively, in Bavesian reconstructions are similar to
those from Figs. 2(a) and (d} to (b) and (e), respectively.
This qualitatively shows that the use of spline regularized
smoothing filters for high frequency apodization makes
the FBP algorithm improve its performance by inberiting
the advantages of using the spline priors in Bayesian
methods.

Figure 4 shows the total squared error #° versus the
smoothing parameter A for FBP reconstructions using our
spline-regularized smoothing method. Notice that the
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Fig. 4. Totai squared error #° versus smoothing parameter A for three different spline orders (x=1,2, and 3). (a)

Phantom A. (b) Phantom B.

ranges of A considered in our experiments are realistic in
that, for each order «, the value of 4 that yields a
minimumn of #° is near the center of the range. The
curves in Fig, 4 indicate that the higher the order #, the
less the sensitivity of the smoothing spline filter to the
variations of A. In fact, while all of the curves in Fig. 4
are unimodal over a wide range of A, the curves for
n=3 turns out to he least sensitive to the variations of
A for both phantoms A and B. This indicates that the
use of higher-order models can alleviate the problem of
choosing the smoothing parameter by allowing a wide

Fig. 5. Pointwise bias images for phantorm A obtained
from 50 independent noise realizations. The bias images
are bipolar, with a value of zerc displayed as an
intermediate grey, with darker/lighter regions corres-
ponding to negative/positive bias

range for the value of A.

According to our experimental results, the major source
of characterizing the TSE curve {(Fig, 4) of a spline filter
is the bias error rather than the STD error. Figures 5
and 6 show the pointwise bias images for phantoms A
and B, respectively, where the results from the three

different values of A (4;,A7,As) for each spline order are

shown. In Figs. 5 and 6, A" is the value of the
smoothing parameter that yields the smallest TSE. The
pointwise bias images clearly show that, as the spline
order # increases, the sensitivity of bias error to the

Fig. 6. Pointwise bias images for phantom B obtained
from b0 independent noise realizations

J. Biomed. Eng. Res: Vol. 22, No. 4, 2001
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Fig. 7. Pointwise STD images for phantorn B obtained
from 50 independent noise realizations

variations of A decreases. For instance, the change of the
contrast in the bias images from Ay to Ay for »=1 is

much larger than that for =n=23.Figure 7 shows the
pointwise STD images for phantom B. (Since the results
from phantom A are visually similar to those from
phantom A, they are not reported here) Note that the
same grey scale normalization was used for all images to
allow fair comparisons. Similarly to the results for the
pointwise bias images, the sensitivity of 3TD error to the
variations of A decreases as the spline order # increases.

The results in Figs. 4 to 7 show the usual bias/
variance tradeoff; large values of A lead to larger bias
but smaller variance, and the opposite is true for small
values of A. In order to obtain the quantitatively best
result, it is necessary to choose A that yields the
smallest errors in both bias and variance.

Tahle 1 sumnmarizes the smallest TSEs and the corres—
ponding optimal values of A (A") for each order of the
spline filter. Note that, although the sensitivity of a spline
filter to the variations of A in terms of TSE decreases as

Table 1. The smallest TSEs { ££3and corresoonding & (A")

Phantom A Phantom B

Order . . . ;

A ! A £
n=1 0.8 229.93 1.8 117.94
n=2 04 267.70 0.8 92.46
n=23 0.1 218.06 0.8 93.69

o &3 A A227, A4z, 2001

the order = increases, the smallest TSE is minimal
(207,70 and 92.46 for phantoms A and B, respectively) at
the second order (x=2). This implies that increasing the
order does not always improve the quality of
reconstructions. According to our experimental results, the
use of high spline orders above #=2 tends to
oversmooth reconstructed images. This is presumably due
to the fact that a high order spline filter above #=1 has
the effect of using a large number of pixels for
regularization, which may in turn degrade the resolution
of reconstructed images by using many pixels far from
the pixel of interest.

Summary and Conclusion

We have considered a spline-regularized sinogram
smoothing method for FBP reconstruction. The mettod is
based on the mathematical relationship between the
regularization and the lowpass filtering. In this case,
although the quantitative performance of the standard
FBP algorithm is not as good as that of DBayesian
methods, the simpler ¥BP algorithm with spline filters
provides the well-known advantages of using higher
order regularizers, such as the thin-plate prior, in
Bayesian methods.

The results from our quantitative performance test
show that the higher the spline order, the less sersitive
the spline filter in both bias and variance to the
variations of the smoothing parameter, which indicates
that the use of higher order filters can alleviatz the
problem  of choosing the smoothing parameter A
However, the quantitative results also show that
increasing the order does not always improve the cuality
of reconstructions in that, above some orders, the
minimum TSE increases as the spline order increases.
Therefore, it is necessary to choose a proper order to
achieve the quantitatively best result. According to our
simulation results, the second order (n=2) vielded a
minimum in TSE.

The net conclusion is that, while the quanutative
performance of the deterministic FBP algorithm is known
to be poor compared to that of Bayesian methods, the use
of spline regularized smoothing filters for high frecuency
apodization makes the FBP algorithm improve its
performance by inheriting the advantages of using the
spline priors in Bayesian methods.
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