Abstract
정밀을 요하는 자동차 부품의 측정 시스템은 온도에 따라 보상이 필수적이다. 부품의 측정값의 신뢰도를 유지하기 위해서 단순히 제품의 합격 영역을 상온에서 51.786~51.819mm로 했을 때, 온도가 상온에서 따러져 있는 경우 그 부품의 측정영역을 신뢰하기가 어려워진다. 본 논문에서는 이 문제를 해결하기 위해서 2개의 카메라를 사용하여 한쪽은 표준 제품을 두고, 다른 쪽은 실제 제품을 둠으로서 온도에 따라 달라지는 표준 제품의 측정값의 Offset를 실제 제품에 반영함으로써 측정값을 보상하려고 하였다. 자동차의 부품은 여러 가지가 있으나, 이 중에서 현재 공장에서 측정에 어려움을 겪고 있는 에어콘 스윗치인 마그네트 코일 하우징을 대상으로 하였다. 특히 측정 대상이 크고, 카메라의 화소수가 40만 이하일 경우, 측정의 중요한 포인트는 화소수와 배경과 대상의 구별이다. 이를 정확히 알아내는데, FCM (Fuzzy C-means) 알고리듬이 좋은 결과를 주지만 속성 공간에서 유사성만을 고려하고, 공간영역에서 유사성은 고려되지 않기 때문에 FCM은 \"equal evidence\"와 \"ignorance\"를 구분하지 못한다. 이를 개선하기 위해서 FCM를 수정하여 먼저 FCM로 처리하고 이를 바탕으로 PCM (Possibilistic C-means)를 사용하였다. 결과를 모니터에 보여주고, RSC-232 포트를 통하여 신호를 마이크로 프로세서에 전달하여 제품의 양호(good), 불량(bad)을 판별하는 신호를 발생하게 하였다.을 판별하는 신호를 발생하게 하였다.