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Recognition of Material Temperature Response Using Curve Fitting
and Fuzzy Neural Network

Young-Jae Ryoo, Seong-Hwan Kim, Young-Hak Chang, Young-Cheol Lim, Eui-Sun Kim, and Jin-Kyu Park

Abstract: This paper describes a system that can be used to recognize an unknown material regardless of the change of ambient tem-
perature using temperature response curve fitting and fuzzy neural network(FNN). There are some problems to realize the recogn-
tion system using temperature response. It requires too many memories to store the vast temperature response data and it has to be
filtered to remove noise which occurs in experiment. And the temperature response is influenced by the change of ambient tempera-
ture. So, this paper proposes a practical method using curve fitting to remove above problems of memories and noise. And FNN is
proposed to overcome the problem caused by the change of ambient temperature. Using the FNN which is leamned by temperature
responses on fixed ambient temperature and known thermal conductivity, the thermal conductivity of the material can be inferred on
various ambient temperature. So the material can be recognized by the thermal conductivity.
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I. Introduction

Robots which can sense, think and act like man are required.

Various sensors were studied to make the intelligent robot.
Some contact sensors to sense force and pressure or to recog-
nize forms of objects have reported, but not many a sensor to
recognize material has been studied.

As a fundamental study, Russell designed a sensor to recog-
nize materials by thermal conductivity[1], and suggested a
possibility to discriminate objects using heat conducting rela-
tion. It is hard to make this method to practical use, because it
takes a lot of time to reach the steady state and the characteris-
tic of heat conduction is changed according to ambient tem-
perature.

A practical method was studied to discriminate material
comparing the three points of temperature response for an
unknown material with those of the look-up table in mem-
ory{2]. But this method has a drawback that the values are
influenced by the experimental noise on the temperature re-
sponses.

In this paper, we propose a method in order to overcome the
above problems using curve fitting of temperature response
and fuzzy neural network(FNN) learned for various ambient
temperatures as shown in Fig. 1. The initial transient state of

temperature response(7;) has the trend of exponential function.

The exponential function approximated by curve fitting has
two parameters: coefficient(C) and exponent(E). By using
these two parameters, full temperature response data can be
represented without noise and reserved memory. Two parame-
ters were measured for the change of ambient temperature(T,)
with the interval of 5[°C]. The FNN is learned by three input
variables - coefficient, exponent and ambient temperature —
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Fig. 1. Procedure of material recognition using fuzzy neural
network.

and an output variable - thermal conductivity(7C) of material.
The thermal conductivity of the material can be inferred on
every ambient temperature using the FNN. So the material can
be recognized by the inferred thermal conductivity.

II. Sensor and heat conduction

1. Principle of the Sensor

The sensor is a contact sensor which has a similar structure
with human finger. There is blood with uniform temperature
of 36.5[°C] which is flowing inside the finger and nerve cells
which feels temperature are distributed near the skin, as shown
in Fig. 2 (a). So we can feel the degree of cold according to
the thermal conductivity of the contacting material. The higher
thermal conductivity the material has the colder we feel. Fig. 2
(b) shows the one-dimensional model of the contacting sensor
and object.

2. Relation of Heat Conduction

Sensor and object are supposed to be plane as Fig. 2 (b).
And thermal resistance of conduct area is neglected. So it is
regarded as the heat conduction of composite media. From
heat conduction equations and boundary conditions, tempera-
ture equations of sensor and object are obtained as follows

T((z,6)=SS,+ ) A,sin(S,,2)exp(-SLat) (1)

n=1

iif, 0 <z < [,
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T,(z,t) =SS,

> 2
+> A,C,sin(S,, (L, + L, — z)) exp(=Sa,at,t) @

n=1

if, L, <z< L +L, ,

where SS, and SS; are steady state solutions of sensor A and
object B respectively. A,, C,, Su, and S,z are results from
boundary conditions.

When the sensor is out of contact with an object, the tem-
perature distribution at initial instant is shown as dotted line,
and after the sensor gets in touch with an object, the steady
state distribution is shown as a solid line in Fig. 2 (c).

At the steady state, T, the temperature of sensing point Ly is
expressed as follows.

P SR Ot 1) N 3)
(L + LK, /K,)

From the equation (3), thermal conductivity of object, K,
can be obtained. Although theoretical realization of the recog-
nition of an unknown material using K is possible, it is of no
practical use because it takes a lot of time to reach the steady state.

Finger Object
(a)

Sensor Marterial
)

L1+L2

---------------- Initial Instance
Steady State

(©
Fig. 2. Principle of sensor. (a) Contact of finger and object.
(b) One-dimensional model of sensor and material.
(c) Temperature distribution at initial instance and
steady state. '

HI. Thermal response curve fitting
The temperature response has transient and steady state. For
practical use, we are interested in only initial transient state.
The initial transient state can be approximated to exponential
function. An example of measured temperature response is
illustrated in Fig. 3.

70

65

50 |-

45

0 100 200 300 400 500 600 700 800 900 1000
Time (msec)

Fig. 3. Measured temperature response curve.

The raw data of the temperature response have noisy com-
ponents and require too many memories. One practical way to
overcome such problems is to approximate the measured data
to exponential function and find out the parameters by using
minimum square method. Exponential function can be ex-
pressed as

T, =Ce" . )

And natural log is taken to the both sides of (4) in order to
transform the curve to linear equation.

In7; =InC+Et. &)

In the equation, coefficient (C) and exponent (E) are ob-
tained by. minimum square method as follows :

nZt lnT z Z lnT . )

C=exp i=] i=1 i= 12
nzzg_(zt,.j
tf (InTy) Zt (InTy), Zt e
nZt _(z )

i=1

where ¢ is i-th time instant and # is the number of data used
for the approximation of temperature response curve. Thus,
the final result can be written

nZt (InTy) t, (InTy),
T; =exp i=1 i= l=12 .
' nth—[ r,»] ®)
i=l i=1
> I > (InTy), - Zn:ti(lnTs)iit,.
exp =l i=l i=1 i=1 t,
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and the curve of approximated exponential function (8) is
shown as shown as thick solid line in Fig. 3.

IV. Inference of thermal conductivity using fuzzy

neural network

Generally, the fuzzy inference has a distinguished feature of
being able to incorporate expert's inference rules using linguis-
tic descriptions of the rules. However, most experts often learn
the inference rules through trials and errors without clear lin-
guistic expressions and they sometimes learn rules uncon-
sciously. The identification of the inference rules from the
expert's experience is time consuming. Furthermore, tuning of
the membership functions of the fuzzy logic needs "experts of
the fuzzy inference". Thus, FNN can automatically identify
the expert's inference rules and tune the membership functions
from the expert's inference data[3]-[6].

This paper adopts a novel FNN which has advantages of
both the fuzzy logic and the neural network, which makes it
possible to avoid complex mathematical analysis of tempera-
ture response and reduce a lot of memory of database for vari-
ous ambient temperature. The FNN is initially created by ex-
tracting rules from a set of input-output data using FCM clus-
tering algorithm([7][8]. Then, the FNN is learned to reduce the
output errors through two steps of error back-propagation
learning process. In the first step, the consequence parameters
of the FNN are tuned by learning data. In the second step, the
fuzzy membership functions of premise part are adjusted dur-
ing learning. The simplified model of the FNN for a rule is
shown in Fig. 4. The number of inputs are three; coeffi-
cient(C), exponent(E) of the approximated exponential func-
tion and ambient temperature(T,). The output is natural log of
the thermal conductivity due to the exponential characteristic
of thermal conductivity for various materials. When the learn-
ing is completed, the FNN is able to infer the thermal conduc-
tivity of the materials at investigated ambient temperature as
well as the one that is not investigated.

1. Configuration

Fig. 4 shows a configuration of the proposed fuzzy infer-
ence using a neural network. The fuzzy model is of a linear
hybrid model.
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Fig. 4. Architecture of the fuzzy neural network.
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where R’ is the i-th fuzzy rule, x; is the j-th input variable, 4; is
the i-th fuzzy variable for the j-th input variable, » is the num-
ber of rules, 5 is the i-th inferred output value, g/ is the coeffi-
cient, w; is the true value in the premise and )° is the inferred
output value.
2. Premise

The network consists of seven layers and uses the back
propagation algorithm for learning of the network as shown in
Fig. 4. The figure shows the case where the controller has n-
inputs(x;, xa, ..., X,) layer (A layer), one-output layer (G layer),
and hidden layer for an unit rule. The outputs of the units with
symbols denote sums of their inputs and denote products of
their inputs. The inputs into (A)-layer x; are normalized by the
connection weights Wy, Normalized input variables, x; are
given by

X,
= J = W,x (12)

X, = =
/ Max |x | /

The sigmoid function flx) are given by

1
_ (13)
/&) T+ exp(—Wog, (5+ Wepp)

where Wi, and Wi, are to be modified through learning.

The output of the unit in (D)-layer g(x) is derived by remov-
ing the magnitude of the differentiated value of the sigmoid
function f{x). The output of (D)-layer g(x) is the bell-shaped
membership function that has a center of W¢,s and slope of
WDC]r

1 .
1+ exp(—Wpe, (x+ We,5)) (14)

glx)=

1 -
{1 1+ exp(Wpe, (x4 Wepg ))}

3. Consequence

The consequences are expressed by linear equations. As
shown in Fig. 4, the neurons of (B)-layer are connected with
the neuron of (C.)-layer through weight W 5, which expresses
coefficient a; of the linear equations. Therefore, the output of
(Co)-layer is expressed as follow:

y =a, +a/x ++a,x, (15)
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The inferred value of the neuro-fuzzy is obtained from the
product of the true values in the premises and the linear equa-
tions in the consequences.

. Wy (16)

k=

The output of (G)-layer can be expressed as follow:

#=3y a7
i=1

V. Experimental hardware configuration
1. Sensor structure

Basic structure, shape and size of the sensor is shown in Fig.

5. The sensor is composed of two parts, heating part and sens-
ing part. A power transistor is used as the heating source and
the first thermistor(TH1) provides feedback for a temperature
stabilizing circuit And the second thermistor(TH2) measures
the temperature drop caused by heat flow into the gripped
object. The third thermistor(TH3) measures the ambient tem-
perature. Because of its flexible elasticity, silicon rubber
works like skin of the human finger.
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Fig. 5. Structure of sensor (a) Circuit (b) Dimension.

2. Hardware configuration

The hardware configuration for experiment is shown in Fig
6. There are a testing robot, a sensor, a computer, a D/A con-
verter and an A/D converter, etc. Temperature setting of the
heating part is controlled by D/A converter. As soon as the
measuring operating begins at work, the temperature of the
heater, the ambient temperature and the temperature of the
sensor are measured through the A/D converter. Robot gripper

is controlled by the computer through RS-232C line.
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Fig. 6. Hardware configuration for experiment.

VI. Experimental results and discussion
1. Temperature response curve fitting
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Fig. 7. Measured temperature response at ambient temperature
40[°C] by experiment and approximated exponential
function by curve fitting.

Temperature response of material is influenced not only by
the thermal conductivity of the material, but also by the ambi-
ent temperature. The three materials - Aluminum, Glass and
Wood - were used as the experimental objects and all materials
have the same shape and size - 65 x 35 x 5 [mm). From 0[°C]

. to 40[°C] of ambient temperatures, the temperature response

curves of the three materials were measured with the interval
of 5{°C}. The temperature response data were generalized to
exponential function by curve fitting. Fig. 7. shows measured
curves and approximated curves for each material. Agreement
between measured and approximated curve is reasonable.
2. Learning data

The approximated exponential function has two parameters
- coefficient and exponent - which represent temperature re-
sponse. The coefficient and exponent of the exponential func-
tion according to various ambient temperature are used for the
inputs of the FNN and the value corresponding to the thermal
conductivity of material used for the output. Fig. 8 shows the
learning data for three materials. The FNN is learned to reduce
the output errors through two steps of error back-propagation
learning process. In the first place, the consequence parame-
ters of the FNN are tuned and secondly the fuzzy membership
functions of premise part are adjusted by the learning data.
The FNN can be used as a inference system to recognize mate-
rials.



Transaction on Control, Automation, and Systems Engineering Vol. 3, No. 2, June, 2001 137

0.5
© Aluminum
- |®Glass
04 F------------------ A Wood -
A
Wo3pAd-----mmo
- 4
2 |
o 0.2 -“-”3 ---------------------
- e °
* [} °
o 00
LN o
ot fp-~"-~------ @a® -~ msmmmms
° ; - .
0 0.2 04 0.6 08 1 12
Coefficient (C)

Fig. 8. Distribution of experimental data of three materials.

3. Experimental results

Experimental results are shown in Table 1. The difference
between expected and inferred output is to the learning error
of the FNN. It is, however, considerably small and makes no
trouble to discriminate materjals among aluminum, glass and
wood. On every ambient temperature, it was able to recognize
the material exactly. As shown in Table 1, for example, it was
possible to recognize materials on the ambient temperature of
18[°C] where learning was not carried out.

Table 1. Inference results at various ambient temperature
where learning was not carried out.

Ambient
Temp. Material Expected | Inference Error
C) Output Output

Aluminum 1 0.9.5989 | 0.094011

3 Glass 0.378825 | 0.457008 | -0.07818
Wood 0 -0.13489 | 0.134890

Aluminum 1 0.985992 | 0.014008

18 Glass 0.378825 | 0.426604 | -0.04778
Wood 0 -0.11272 | 0.112718

Aluminum 1 0.966333 | 0.033667

27 Glass 0.378825 | 0.414050 | -0.03523
Wood 0 -0.03732 | 0.037321

Aluminum 1 1.001507 | -0.00151

32 Glass 0.378825 | 0.408062 | -0.02924
Wood 0 -0.04298 | 0.004298

VII. Conclusion

We described in this paper an intelligent technique that can
be used to recognize materials regardless of ambient tempera-
ture change. Using curve fitting of temperature response, full
temperature response data could be represented by exponential
function which has two parameters - coefficient and exponent.
Consequently, a method using curve fitting removes the prob-
lems of memory and noise. And excellent agreement was ob-
tained between measured curve and approximated curve in
experimental result. Using FNN, the problem caused by the
change of ambient temperature was overcome. The thermal
conductivity of material was inferred on every ambient tem-
perature using the FNN. So, the material could be recognized
by the inferred thermal conductivity. In the future, we will
apply the proposed recognition system to various materials.

References

[1] R. A. Russell and F. J. Paoloni, “A robot sensor measuring
thermal properties of gripped object,” IEEE Trans. on Inst.
Meas, vol. Im-34, no. 3, pp. 450-460, Sept. 1985.

[2] Y. C. Lim, J. K. Park, K. Y. Cho, E. S. Kim, T. G. Kim,
and I. G. Kim, “Performance improvement of material rec-
ognition sensor using cubic spline interpolation,” [EEE
Proc. on IMTC 94, pp. 328-331, 1994,

[3] H. Takagi, “Fusion technology of fuzzy theory and neural
networks survey and future direction,” Proc. Intern. Conf.
on Fuzzy Logic & Neural Networks, pp. 13-26, 1990.

[4] S. Horikawa, T. Furuhashi, S. Okuma, and Y. Uchigawa,
“Composition methods of fuzzy neural networks,” IEEE
Proc. of IECON’90, pp. 1253-1258, 1990.

[51 K. Kiguchi and T. Fukuda, “Position/Force control of
geometrically unknown objects using fuzzy neural net-
works,” IEEE Trans. on Indus. Elect., vol. 47, no. 3, pp.
641-649, June 2000.

[6] K. Watanabe, J. Tang, M. Nakamura, S. Koga, and T. Fu-
kuda, “A fuzzy-gaussian neural network and its applica-
tion to mobile robot control,” IEEE Trans. on Cont. Syst.
Tech., vol. 4, no. 2, pp. 193-199, March 1996.

[7]1 W. T. Tucker, “Counterexamples to the convergence theo-
rem for fuzzy C-Means clustering algorithms,” Analysis of
Fuzzy Information, vol-111, pp. 109-122, 1987.

[8] X. L. Xie and G. Beni, " A validity measure for fuzzy clus-
tering, ” IEEE Trans. on Pattern Analysis and Machine In-
telligence, vol. 13, no. §, 1991.



ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 3, No. 2, June, 2001

Young-Jae Ryoo

He received BS, MS, and Ph.D degrees
in electrical engineering from Chonnam
National University at 1991, 1977, 1990,
respectively. He is currently a professor
in Mokpo National University.

Young-Hak Chang

He received BS, MS, Ph.D degrees in
electrical engineering from Chonnam
National University at 1981, 1984, 1991,
respectively. He was a visiting professor
in Monashi University, Australia. He is a
professor in Mokpo National University
currently.

Eui-Sun Kim

He received BS, MS, Ph.D degrees in
electrical engineering from Chonnam
National University at 1981, 1987, 1999
respectively. He is a professor in Seo-
nam University currently.

Seong-Hwan Kim

He received BS, MS, and Ph.D degrees
in electrical engineering from Korea
University in 1991, 1995, 1998, respec-
tively. He is currently a professor in
Mokpo National University currently.

Young-Cheol Lim

He received BS degree in electrical
engineering from Chonnam National
University at 1975, and MS, Ph.D de-
grees from Korea University at 1993,
1998, respectively. He is a professor and
director of RRC in Chonnam National
University currently.

Jin-Kyu Park

He received BS, MS degrees in electri-
cal engineering from Chonnam National
University at 1994, 1996, respectively.
He is an engineer in Deawoo Heavy
Industries & Machinery Ltd. currently.



