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Environment Modeling for Autonomous Welding Robots

Min Y. Kim, Hyung Suck Cho, and Jae-hoon Kim

Abstract: Automation of welding process in shipyard is ultimately necessary, since welding site is spatially enclosed by floors and
girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding robot that can
navigate autonomously within the enclosure needs to be developed. To achieve the welding task, the robotic welding system needs a
sensor system for the recognition of the working environments and the weld seam tracking, and a specially designed environment
recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology
in order to provide robots with work environmental map. At the same time, a strategy for environmental recognition for welding
mobile robot is proposed in order to recognize the work environments efficiently. The design of the sensor system, the algorithm for
sensing the structured environment, and the recognition strategy and tactics for sensing the work environment are described and dis-

cussed in detail.
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L. Introduction

At shipyards, the demands of automatic operations and the
desire to pursue a broader automation strategy have fueled the
development of new advanced robotic and process control
systems. Due to the increase of personnel expenses, the auto-
mation of the welding process is necessary for improving the
productivity and quality of shipbuilding process. In shipbuild-
ing, a key aspect of the welding process automation is the
prefabrication of sub-assemblies on automated lines using
robotic welding technology. The welding process for the sub-
assembly consists of an open-block welding and an closed-
block welding. Many researchers have been doing researches
on the robotic welding in shipbuilding. In the case of the open
block welding, the gantry welding system [1]{2] and a mobile
welding robot system [3] has been developed recently and
applied to sub-assembly process successfully. However, the
research and development for closed-block welding are rela-
tively very few. Recently, due to its necessity this closed-block
robot welding system has been drawing a lot of research inter-
ests in shipbuilding.

Korea Advanced Institute of Science and Technology
(KAIST) and Samsung Heavy Industries Co., Ltd. have devel-
oped a mobile welding robot system applicable to the closed-
block welding. Fig. 1 shows the interior of the closed block in
subassembly to be welded. In manual welding operation, the
welding operators pass by floor hole or girder hole during the
welding operation. Since the working environment is enclosed
with floors and girders, the ventilator must be established for
removing the smoke. If this manual welding line is robotized,
a feasible work trajectory of the Trobotic welding system can be
illustrated as shown in the figure. When the mobile welding
robot completes welding job, it moves to the next block
through the floor hole. The environment in which the robot

navigates consists of mostly plane structures and their variants.

Under this circumstance, it is not an easy task for a robot to
navigate through this rather complex environment, to ap-
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proach the areas to be welded and to find weld seam line accu-
rately. Tt must be equipped with a capability of sensing and
avoiding obstacles to reach the final working zone. For the
recognition of the working environment and weld seam lines,
a sensor system has been developed which utilizes multi-
structured light based on an optical triangulation method [4].

This paper proposes a visual sensing system and a strategy
for recognizing the 3D shape of the welding environments.
For the recognition of this type of navigating situation and
weld seam lines, the sensor system utilizes a multi-structured
light based on the optical triangulation method. Based on this
perception capability, we presents an environmental recog-
nition strategy for a mobile robot to be applied to closed-block
welding in sub-assembly process of shipbuilding. The devel-
oped algorithm architecture for efficient environment recogni-
tion is composed of a conventional 3D scanning module and a
plane generation module utilizing on 3D Hough transform.

The organization of the paper is as follows: In section 2, we
introduce the design concept of the welding robot system for
closed block assembly. In section 3, the sensor system for
seam tracking and welding environment recognition is devel-
oped and described in detail. In section 4, the algorithm archi-
tecture for environment recognition is described, and a series
of experimental tests are performed to verify the efficiency of
the proposed sensing system and algorithm. In section 5, a
strategy for this environment recognition is proposed, and a
series of experimental tests are performed to verify the effi-
ciency of the proposed recognition strategy. Finally, conclu-
sion is made in the last section.

I1. Robot tasks for welding closed-block assembly

The mobile welding robot system consists of a welding ro-
bot, a mobile platform, and a sensor system. Fig. 2 shows the
robot system developed for the closed-block welding process.
When the welding robot finishes the welding task within the
specified region, the mobile platform must be able to move to
next welding space. For this, it can climb across the longi
through a specially designed robot mechanism without help of
the human operator. After the mobile platform climbs over the
longi, then it puts the welding robot down onto the bottom
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plate of the closed block, so that the welding robot moves
freely within the space formed between two longis. For envi-
ronmental recognition tasks, the robot is equipped with a sen-
sor system to be able to perceive and recognize the work envi-
ronments. Within the free space in the task space between two
longis, the operational procedures of the welding robot are as
follows:

o welding environment recognition

e matching the acquired 3D map data with the given CAD
data

e obstacle detection and avoidance

o welding line detection

® path planning of the robot arms for welding

® robot control and welding

The tasks shown in the above should be performed autono-
mously by the robot, since no human operator assists any op-
eration to be made. When welding operation is successfully
done, the welding robot comes back to the platform waiting
during the welding operation. Then, the mobile platform lifts
and holds the robot, climbs over the longi and moves to the
next task space according to the predefined welding schedule.

ITI. The sensor system for welding environment
recognition and seam tracking

To fulfill the environmental recognition task and welding
task, the mobile welding robot is equipped with a sensor sys-
tem to be able to track the welding seam and to recognize the
environments under which it works. In the case of the seam
tracking, the optical triangulation method using the structured
light has been widely used [5][6], and hence this paper will
not treat any topic associated with this.
1. Environmental conditions

Generally, the environmental conditions inside the block are
characterized by low intensity of light, dense smog, unpredict-
able objects, and space structures. If there is no illumination
system, the interior of the closed-block is a field of darkness.
Despite of ventilation, welding process makes some smog and
presents foggy atmosphere. Because the sub-assembly process
is the process that welds some fieces of flat plates with differ-
ent shapes, the working environment under which the robot
navigates through can be classified as a structured environ-
ment. Due to these reasons mentioned in the above, the devel-
oped sensor system must be robust to the lighting condition
and smog for accurate 3D recognition of the structured envi-
ronment.
2. Sensor concept

A variety of machine vision techniques, such as controlled
illumination, stereoscopy, photometric stereo, and shape-from-
shading has been developed for the determination of 3D scene
geometric information from 2D images. However, because of
the nature of the manufacturing or welding environment and
the type of features of interest, structured lighting is most ap-
propriate and has been widely applied in the sensing tasks
mentioned above. In this work, the structured lighting is util-
ized for environmental sensing.

The sensor system consists of two lipstick cameras and
three laser diodes. Fig. 3 shows the concept and the configura
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Fig. 1. The interior of a closed-block in sub-assembly and a
mobile navigation route.

1. welding torch
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longi climbing

Fig. 2. The mobile welding robot.

tion of the sensor system implemented for detection of the
environment in which the mobile welding robot navigates.

The first camera (camera A) is used for environmental recog-
nition and the second one (camera B) for weld seam tracking.
The first and second lasers (A, A;) are used for environment
recognition, and the other (B) is for seam tracking. The two
laser stripes make the recognition of the structured environ-
ment easy. The detailed description is presented in reference
[41.

3. Image processing algorithms

The imaging processing algorithm is to extract laser stripe
data from acquired images which may contained other possi-
ble brightness source such as the reflection of laser light from
the unknown specular object, and welding glares.

To perform laser stripe extraction robustly, it needs to dis-
criminate the laser stripe distinctly from noise sources.

The most reliable feature for extracting laser stripe is thick-
ness of laser stripe in the image plane. The basic idea of robust
extraction of laser stripe is to find the highlighted line which
has a known thickness of laser stripe in an acquired image. For
laser stripe extraction, Kim and Cho[6] proposed a spatial
filter which yields maximum response to the center of the
laser stripe through the convolution with the original pixel
data. In this study, however, the thickness of laser stripe is



126 ICASE: The Institute of Contro!, Automation and Systems Engineers, KOREA Vol. 3, No. 2, June, 2001

ser Plane A1

Laser Plane A2

Laser B Obxct
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(b) The configuration of the implemented sensor system

Fig. 3. The visual laser sensor system.

slightly changed depending on the distance from target object
to laser source or the stripe location on image plane. In the
basic experiments using the developed sensor system, the
difference of laser thickness between image center and image
corner is found to be about 13 pixels where the laser source is
0.5~1m far from target object. The image in the comer is
slightly blurred, thus, the thickness change of laser stripe oc-
curs because the focal depth of camera lens in the vision sys-
tem has a little limitation to cover the whole range between
camera and objects.

For this reason, it is difficult to find only one spatial filter
for yielding maximum response to the center of the laser
stripes with various thickness in an image. To overcome the
above mentioned problem, a neural network-based multi-
spatial filter techniques is proposed. The basic idea of the
neural approach is that the neural network can learn the center
of laser stripe from various thickness of laser stripe. The struc-
ture of the proposed neural network is shown in Fig. 4. The
neural network used here is a multi-layer perceptron and con-
sists of an input layer and 2 hidden layers and an output layer.
Input layer has 35 neurons and each hidden layer 20 and 10
neurons, respectively. The inputs of neural network are the
graylevel value of each vertical pixel on laser stripe and the
image coordinates (u,v) of the center position of input window,
A. Its output is the probability of the center of laser stripe, Pje
center- When neural network mask lies in the center of laser
stripe, the probability of the line center, P cemers Yeilds the
maxi-mum probability near to 1. During the learning phase of
the neural network, the input data sets of vertical profile of
laser stripe and pixel coordinates of the center of the searching
window are provided to learn various laser thickness in the
image plane. After learning phase, the neural network spatial
filter is able to estimate thickness of the stripe and to calculate
the center line of the laser stripe.

To extract the line center of laser stripe, the neural spatial
filter operates in the direction of column of the images, be-

cause the stripe is approximately parallel to the rows of the
image. For the weight training of the mulitiplayer neural net-
work, the modified back propagation method is applied with

"learning-rate adaptation called delta-bar-delta learning

rule[10]. Let wy(n) denote the value of the synaptic weight
connecting neuron /i to neuron j, at iteration n. Let 7;(n) de-
note the learning-rate parameter assigned to the weight update
mechanism at this iteration. The learning-rate update rule is
defined as follows:

x ifS,(n-DD;(m)>0 M
A”ji(n+1)= _ﬂ”ji(”) ifsji(”*l)Dﬁ(”)<o
0 otherwise

where Dj;(n) and S;(n) are defined as, respectively

D]{(n):-?M (2)
g 6Wji(”)
and
Sji(n)=(1_5)Dji(n_1)+§sji(n_l) 3

where £ is a positive constant, x and £ are the control parame-
ters, and E(n) is the cost function as the instantaneous sum of
squared errors,

E(r) =3 21, (0) -, @

where y;(n) is the response of the output neuron j, and d;(n) is
the desired response for that neuron. The update formula for
the jith synaptic weight as
CE(n-1
w,(n) = m&n—l)-m&n)ﬁ )

Fig. 5 shows the line extraction results of an acquired image
with laser thickness variation, and the proposed method com-
pared with the conventional method gives more robust result
for the test image.
4. Calibration and resolution analysis

Since the structured lighting approach using a plane of light
is relatively well known, only an overview of the calibration
methodology is presented here for completeness. Fig. 6 (a)
shows the concept of sensor calibration. The fixed coordinates

vertical profile ¥
of laser stripe

input  hidden output
layer fayer fayer

line center

B

probability
of stripe

neural network line detection
spatial filter

Fig. 4. Neural network structure for line extraction.
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(b) Conventional method[6]

(c) Proposed method

Fig. 5. The line extraction.

OXYZ are denoted as the world coordinates, the 2D coordi-
nates v denote the pixel coordinates on image plane, and the
X'Y' is defined as the image plane coordinates. Specifically,
to compute the 3D coordinates (x, y, z) of any point on the
laser strip from the 2D coordinates (u, v) of its image, a trans-
formation T (4x3 matrix) relating the world and image homo-
geneous coordinates in the form

S[x, ¥, z,l]T = M[u,v,l]T (®

is needed, where s is the scaling factor of the homogeneous
transform and M is the perspective transformation matrix. This
transformation can be computed off-line during the camera
and laser projector calibration phase by observing the feature
point in image and the laser stripes on an accurately machined
block gauge of known dimensions (Fig. 6).

On implementation of 3-D measurement system, the most
important variable is the measurement resolution. In the meas-
urement system using laser slit-ray, the resolution is defined as

lateral resolution (X and Y direction) and vertical resolution (Z
direction). In Figs. 7 and 8, the diagrams for resolution analy-
sis are presented on projective planes (XZ, YZ, and XY plane).
Here, the Ly and Ly; are the vertical and horizontal field of
view of the camera at depth T, respectively. T is denoted as the
maximum measuring distance in Z direction, which & denotes
the separation angle of laser slit beam, and fis the focal length
of the camera lens. The Z axis coincides with the camera’s
optical axis, and the distance D denotes base line between
camera and laser diode.  and S are the field angles of camera
view on Y’ and X" plane, respectively. At depth z, a and b are
the vertical and horizontal pixel length due to one pixel on
image plane. If we let P'(x'y’) be the projective point on image
plane of P(x, y, z) in 3-D space, then, the angles between a line
OP’ and z axis are denoted as ¢ and ¥ on XZ and YZ plane,
respectively. My, is the distance from the optical axis in X
direction at the maximum measuring distance, and My, the
minimum measuring distance. M7 is denoted by the measuring
range of this sensor system in Z direction.

From the geometric relations shown in Figs. 11 and 12, we
can obtain the resolution of the optical triangulation based
sensor system in each axis as follows:

_ 2p,. f(2T - L, tan8) (7-D
Y [2f -2(x'+ p,) tan 8](2f - 2x'tan 6)

R = 2p,ftanf(2T - L, tanb) (7-2)
2 [2f—2(x‘+px,)tan9](2f~2x'tan9)

R =_Ly_]f(2T—LX tant9) (7_3)
"TIT 2f-2x'tan@

where /, and /, are the total vertical and horizontal pixel num-
ber of CCD, respectively, and Ly; and Ly, denote the maxi-
mum and minimum measuring range in Y direction. The effec-
tive pixel size p,- and p,. are then expressed by

pa=L.IL @1

py=1,11, (8-2)

where .- and /s are the vertical and horizontal size of the effec-
tive area of CCD chip, respectively.

To design a proper sensor system, the resolution variation in
each axis was observed through a series of computer
simulations. The derivation of the resolution equations and the
simulation results are described in detail in reference {4]. In
case of the implemented sensor system, the seperation angle 8
of the environmental recognition sensor part is about 75°.
Table 1 shows the results of the resolution analysys of this
Sensor part.

Table 1. Resolution analysis for the environmental recognition

sensor system. (Unit: mm)
Distance Rz Ry Ry
600 24 03 0.2
1000 3.5 0.6 0.3
1400 4.9 1.0 0.5
1800 6.5 1.7 0.7
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Fig. 6. Sensor system calibration.

IV. Construction of the environment
1. The plane generation method
The interior of the close-block is essentially a structured en-
vironment composed of several planes with different shapes.
When two laser stripes are projected on a plane, two straight-
lines appear in image plane as shown in Fig. 6 (a). Generally,
the line equation in 3D spaces is as follows:

F=a+tb ©)

where G is the positional vector and 5 is the directional
vector of the line. Two straight lines in image plane can be
detected by Hough transform [7]. Using the acquired line
equation in 2D image plane and Eq. (6), the 3D line equation
can be acquired easily. Fig. 9 shows the plane generated from
two lines. Let the acquired 3D line equations be L, and L,.
From Eq. (9), these lines are represented as follows:

L: X=g +t-h (10a)
L: X=g,+th (10b)

where the 7 , and h , denote the directional vectors of the
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pin-hole camera aser Diode:
L2 !

Fig. 7. Resolution analysis on XZ plane.
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Fig. 8. Resolution analysis on YZ plane.

line L, and the L,, respectively, and the g, and g, the
positional vectors of the lines. Generally, the plane equation in
3D spaces and its vector form are given by:

Fk-d=0 an

where k is normal vector of the plane and d is the distance
from origin to the plane. In the case that the L, and L, lie on
the plane P, the directional vector j . _gf the line L, and the
i , ofthe L, make the normal vector k of the plane P, by
the equation

F=Fxh,. (12)
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If Eq. (12) is substituted to Eq. (11), 4 can be calculated with-
out difficulty.
2. Experimental results

To observe the utility of the plane generation method, a se-
ries of experimental tests are performed. Fig. 10 shows a
folded plate used for this test. With a variation of a folding

angle 0, the plane generations using two laser stripes are tested.

By use of the proposed method, four geometrical parameters

in the plane equation are determined and compared with the

real values. Table 2 and Fig. 11 present the experimental re-
sults. The experimental results show that the maximum ranges
within £2% error. The main aspect of these errors is due to the
misalignment of the laser stripes, the calibration error, the
positioning error of the object, and others. In case of 8 = 45°,
the measured data and real data on YZ plane is shown in Fig.
11, and the maximum error is about 8mm. Based on the ac-
quired plane parameters, the test plate can be reconstructed in
virtual space as shown in Fig.12.

Plane: P1

Normal vector: k 'y
v
k)

Fig. 10. Folded plate for experimental tests.

Table 2. Experimental results for the plane generation.

(&) k] k2 k3 d(m)

22.5° real 0.000 -0.923 -0.382 | 0.382

measure 0.003 -0.921 -0.395 0.375

45° real 0.000 -0.707 -0.707 | 0.707

measure | -0.002 -0.713 -0.705 0.709

67.5° real 0.000 -0.382 -0.923 | 0.923

measure 0.002 -0.368 -0.921 0.928
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Fig.11. Experimental result in case of 8= 45°(YZ Plane).

Fig. 12. Reconstructed test plate in virtual space.

V. Strategies of the environment recognition
1. Field definition and data representation

The task space formed between two longis is classified into
three subspaces; far field, middle field, and near field accord-
ing to the robot-to-welding environment distance. The strategy
for the welding environment recognition is defined at each
field as shown in Fig, 13. The range of each field is limited to
the working range of the sensor. The algorithm architecture for
the environment recognition is divided into two parts. The first
is the conventional 3D scanning module, and the second the
plane generation module utilizing Hough transform. These
modules are appropriately selected at each task. The detailed
description for the tasks in each field is presented in next sec-
tion.

Many different environment representations can be used ac-
cording to the type of task to be performed, the kind of envi-
ronment, and the type of sensor used. The most significant
types of representations are cell decomposition models, geo-
metrical models and topological models [8]. In this work, we
select the cell decomposition modeling technique as an object
representation method. This technique is not able to represent
an object to be modeled exactly. However, any object can be
represented in a simple way by this method. Fig. 14 shows the
cubic cells with 100x100x100 size for 3D environment models.
The one cubic cell (voxel) has 10x10x10mm volumetric size.
This volumetric size was determined on considering the sensor
resolution analysis result in section 4.
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Fig. 14. Cubic cells for a 3D environment model.

2. Far field )
The mobile robot tasks in the far field are mainly decom-

posed into three subtasks:

task 1: detection of obstacles on bottom plate

task 2: plane detection using 3D Hough transform

task 3: coordinates matching between CAD space and
robot space

In task 1, 3D scanning task is executed using one laser

stripe sensor to detect the obstacles on bottom plate. In task 2,
planes are detected via the plane generation module using the
measured data obtained from two laser stripes. When the robot
settles down in a new task space between tow longis, it needs
localization in world coordinates frame. For this purpose, we
propose a positioning method using the plane detection. Fig.
15 shows the plane recognition using two laser stripes de-
scribed in section 4. When the two laser stripes are projected
on a plane, the plane equation can be derived from the 3D line
equations of the stripes observed on an image plane. For the
robot localization, the planes to be recognized are a floor, two
longis, and a bottom plate. In task 3, a coordinate matching
task is carried out for the localization. The coordinate trans-
form matrix between robot coordinates and world coordinates
can be acquired by matching the detected planes into the CAD
plane data. This matching technique used here is based on the

least square error method [9]. Fig. 16 shows the concept of the
plane matching for transformation of robot coordinates and
world coordinates.

Using the acquired transform matrix, the measuring data on
objects in the environment in the robot coordinate frame can
be transformed into and expressed in world coordinate frame.

(a) Two laser stripes projected on a real environment

3D hough transform
for plane detection

(b) Plane detection using 3D hough transform

Fig. 15. Plane recognition using two laser stripes.

3. Middle and near fields
The tasks in the middle field are divided into three major
subtasks:
task 1: detection of obstacles on side plates (longi)
task 2: scanning by a single slit laser sensor and compar-
ing CAD data for obstacle detection
task 3: obstacle recognition and collision check of robot
arm
The task carried out in the near field is to finely scan around
the obstacle region defined in middle field.

hd
iy

Robot coordinates World coordinates

Matching

(a) The detected planes (b) CAD data

Fig. 16. Plane matching for transformation of robot
coordinates and world coordinates.

In order that the robot can access from the far field to the
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middle field, it is necessary to detect obstacles on side walls
first. To carry out all tasks associated with the middle and near
fields, the scanning module in algorithm architecture is util-
ized. Fig. 17 shows the concept and a typical experimental
result of detection of an obstacle on side plane(wall). The
detailed description on comparing two data for the obstacle
detection is presented in referencef{l1]. Fig. 18 shows the
scanning results obtained from the environment composed of a
cylinder and a cubic in the middle and near fields.

(a) A laser stripe projected onto a real environment

(b) The obstacle detected by scanning

Fig. 17. The detection of a obstacle on side plate.

VI. Conclusions and further works

In this paper, we have considered an autonomous mobile
robot that can navigate within a specified indoor environment
of a shipbuilding. To achieve the autonomous robot navigation
and robotic welding, we developed a sensory system using
three laser stripes and two CCD cameras which detects the
welding locations and recognizes the 3D shape of the welding
environments. Through the sensor resolution analysis, the
developed sensor system was designed to have about 4mm
depth resolution at 1m object distance for the environment
recognition.

Based on this perception capability, we presented an envi-
ronmental recognition strategy for a mobile robot to be applied
to closed-block welding in sub-assembly process of shipbuild-
ing. For the efficient recognition of welding environment, the
developed algorithm architecture is composed of the conven-
tional 3D scanning module and the plane generation module
utilizing 3D Hough transform. Through the experimental tests,
the utility of the proposed plane generation method was evalu-
ated. The evaluation results show a good applicability of this
method for recognition of the structured environment within
2% parameter estimation error. Finally, the strategy for the
welding environment recognition was proposed at far field,
middle field, and near field with some application results, and
the basic evaluation experiments for the proposed strategy
were performed.

(a) A real environment

Cubnder. Cubie
Lowdt

(b) The scanning data represented in voxel space

(¢) The fine scanning result in the near field

Fig. 18. The scanning results for the real environment.

Now, we are performing the recognition tests for the objects
with the more complex shapes. The development of this ro-
botic system is still under way. Following issues can be sum-
marized as further works:

o Development and extension of the environment recogni-
tion algorithms

e Extraction of the obstacle information from the 3D
environment data

o Geometrical modeling of each obstacle.
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