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Leak Detection and Location of Gas Pipelines Based on a Strong
Tracking Filter

Q. ZHAO and D.H. ZHOU

Abtract: This paper presents an approach to leak detection and location of gas pipelines based on a strong tracking filter (STF). The
STF has strong robustness against model uncertainties, which will deteriorate the performance of the extended Kalman filter. Hence,
much faster and more accurate leak detection and location has been obtained. Computer simulation results demonstrate the effective-

ness of the proposed approach.
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L Introduction

In the past three decades, many developing countries have
constructed large-scale pipeline networks in order to transport
gases or liquids from the production to the consumption sites.
Leaks of these pipelines can cause serious consequences, such
as the considerable product losses, the environmental pollution
if the materials conveyed are poisonous, and so on. Therefore,
many methods and techniques for leak detection and location
of pipelines have been proposed to prevent further losses and
danger.

Volume balance is the simplest and most straightforward
leak detection technique, which needs only flow meters and
detects leaks according to the principle of mass conservation.
However, according to the inherent flow dynamics and the
superimposed noise, only relatively large leaks can be detected
with this simple method (which are about >2% for liquid and
>10% for gas pipelines) [1]. Furthermore, this method cannot
locate the leaks.

Sonic and acoustic leak detection and location [2] are sim-
ple and accurate, especially the leak detection is almost instan-
taneous. Leaks produce a distinctive sound that can be used to
identify and locate them by means of some devices such as
stethoscopes, hydrophones and so on. For example, an interval
between the times of arrival of the sounds to each device can
be used to deduce the épproximate location of the leak. In [3],
the pressure wave behavior caused by leaks was analyzed in
detail and some advices were presented to improve the accu-
racy of this method. In [4], the mechanism of the stress wave
propagation along the pipeline caused by turbulent ejection
from pipeline leakage was studied, and the characteristics of
the propagation were collected to detect the leakage by using
artificial neural network. Unfortunately, it could not be applied
to small and slow leaks, because there is no signal large
enough to be detected.

There are many other leak detection techniques, for example,
remote field inspection, magnetic flux leakage method, and
ultrasound inspection [2]. Remote field inspection is a
through-wall, electromagnetic, nondestructive evaluation
technology, which can be used to estimate the future life of a
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pipeline, but is very expensive and requires access to the in-
side of the pipeline. Magnetic flux leakage method can work
only on cast iron and steel, because it needs an arrangement of
magnets designed to put a steady direct-current magnetic field
into the pipe wall so that the magnetic field travels in the same
direction as the pipe axis. Ultrasound inspection is carried out
by using a beam of coherent sound energy, with frequencies
higher than people can hear. The sound wave travels into the
object to be inspected and is reflected whenever there is a
change in the density of the material. This method can detect
not only leaks but also pits. Ultrasonic tools are commercially
available for oil pipeline inspection, but this method can only
inspect tuberculation-free pipe, because the tuberculation can
easily reflect the sound.

The methods mentioned above are all model free, however,
the methods based on models are promising for small and
slow leaks. Billmann and Isermann [1] used nonlinear adap-
tive state observers for the pipeline dynamics and a special
correlation technique for the leak detection and location. In
[5](6], volume balance technique was greatly improved by
mathematical modeling. Fukuda and Mitsuoka [7] and Wang
et al. [8] formulated the pressure gradients by using the auto-
regressive (AR) model, then they used AIC and Kullback
information to detect leaks, respectively. Chernick and
Wincelberg [9] applied the autoregressive moving-average
(ARMA) model with the “ variate difference method” to the
pressure, whose results were that 95% of the variation of the
site pressure data was estimated to be process noise and 59%
of the variation of the pressure data at the end of pipelines was
due to process noise. Hence some improvement in leak detec-
tion capability could be achieved through use of the model.
Berkherouf and Allidina [10] presented a kind of faulty model
and used an extended Kalman filter to estimate the state vari-
ables, and then detected and located leaks in long pipelines. In
[11], a thermal model was considered to locate the leak more
accurately.

In this paper, a new model based approach to leak detection
and location of gas pipelines by use of a strong tracking fil-
ter(STF) is provided. The STF, in fact, is a suboptimal fading
extended Kalman filter (SFEKF) [12], which is more efficient
than extended Kalman filter, especially when there are large
modeling errors and noise. This method can locate leakage
sites more accurately and much faster, thus is very useful for
maintenance of long pipelines. Computer simulation results
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illustrate the effectiveness of the proposed approach.

This paper is organized as follows. Section 2 summarizes
the mathematical models of pipelines. Section 3 presents the
outline of strong tracking filter. In Section 4, leak detection
and location method is introduced. Some simulation results are
given to show the good performance of the proposed approach
in Section 5, and finally, a short conclusion is made in Section 6.

I1. Mathematical model of pipelines

A dynamic mathematical model of a pipeline was derived
by theoretically modeling gas and liquid pipelines. Simplify-
ing assumptions such as a constant diameter D, a turbulent
flow and isothermal condition result in a common description
for the gas and liquid flow dynamics. Since small leak detec-
tion for gas pipelines is more difficult than liquid pipelines, we
will discuss the leak detection of gas pipeline only in this pa-
per. It is pointed out that the results of this paper are easily
extended to liquid pipelines. The one-dimensional isothermal
model for gas pipelines is described by the following equa-
tions [10]:
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where p [Nm-2] is pressure, ¢ [kgs-1] is mass flow rate,
x [m] is length coordinate, ¢ [s] is time coordinate, ¢ [m s-1]
is isothermal speed of sound in gases, A[ m2] is pipeline
cross-section, D [m] is pipeline diameter, A is the friction
coefficient.

This pipeline model is a set of partial differential equations
of hyperbolic type with nonlinear distributed parameters. The
suitable boundary conditions [13] may be chosen as follows:
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where L [m] is the pipe length, and the initial conditions:
{P(x, 0) = py(x) @
q(x,0) = go(x)

If a leak ¢* [kgs-1] occurs at x = x*, Eqgs. (1) and (2)
are still valid for all x e[0,x*)w(x*,L]. However,at x =
x* , the conservation of mass yields:

g(x"",0)-q(x"* ) =q" )

It is assumed that the leak introduces a negligible momen-
tumin the x direction, so that Eq. (2) is unaffected for x =x* .
The problem is to estimate the size ¢* and the position
x* of the leak using available measurement data, generally
pressure measurement data at discrete points along the pipe-
line. Then it is required to design a state estimator or filter for

the nonlinear distributed parameter systems.

I11. Outline of a modified strong tracking filter
In general, there are two problems in the extended Kalman

filter. First, its robustness is not good for model uncertainties
[14][15]. Second, the extended Kalman filter will lose its
tracking ability for abrupt changes when systems reach their
steady state, because the gain matrix K(i+1) is too small at
that time. Therefore, in order to overcome the modeling errors
and other uncertainties, and track the abrupt changes effi-
ciently, the strong tracking filter (STF), which is in fact a
suboptimal fading extended Kalman filter (SFEKF), is pre-
sented in this paper. ,

Consider a class of discrete-time nonlinear systems of the form:
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where state xeR”, input u € R”, output y € R™, nonlinear
functions f:R?xR"—>R", and h:R"—>R" have con-
tinuous derivatives with respect to %, the process noise
v(i)e R? is a zero-mean, Gaussian white noise with covari-
ance (i), the measurement noise e(i) e R™ is also a zero-
mean, Gaussian white noise with covariance R(i) ,
I')) e R™ is a known matrix with proper dimension, ()
and e(i) are statistically independent.

This SFEKEF is obtained by applying the orthogonality prin-
ciple to the primary performance index of the extended Kal-
man filter{12]. Namely, we need to choose a time-variant gain
matrix K(i+1) to satisfy the two performance indexes: One

is E[FE+DX(E+1'] = min, and the other is
E[y(i+1+)yT(+1D)] =0, where i=0,1, 2,
j=1 2, Ei+1) = x(i+1)-i@+1]i+1) , and

X(@+1]i+1) is the estimated value of state variables and
y(i+1+j) is the residual, whose definition is in Eq. (13).
The basic idea is to introduce a suboptimal fading factor to
modify the original covariance matrix of the state predictive
errors in the extended Kalman filter; thus, we can use the or-
thogonality principle to regulate the suboptimal fading factor
to make the filter track the practical systems in spite of model-
ing errors and other uncertainties. If the suboptimal fading
factor is chosen not less than one, the effects of history data to
present filtering values will be attenuated. As a result, the
tracking rapidity of filters will be improved. In order to obtain
the online algorithm, the second performance index, i.e., the
orthogonality principle is often satisfied approximately.
According to the analysis and deduction in [16], a modified
strong tracking filter (MSTF) is obtained as follows [16]:
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where A(i+1) is the suboptimal fading factor matrix;
p=0.95 in Eq.(21) is a forgetting factor; f>1inEq.(19)isa
preselected softening factor, which is introduced to make the
state estimation much smoother; in Eq.(17) &, >1,i=1,2,--'n,
are predetermined coefficients. For details how to select these
parameters, we refer the readers to [12)

IV. Leak detection and location method

We will use the MSTF to estimate the leakage ¢* and its
location x*. Solving distributed parameter state estimation
problems needs approximating it with finite variables. First,
the method of characteristics is applied to transforming partial
differentials into total ordinary differentials [10]. For x = x*,
Egs. (1) and (2) can be linearly combined for some real, non-
zero r,
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Hereby, along the characteristic functions, the partial differen-

tial equations become ordinary differential ones. Then Egq.
(26) becomes Egs. (29) and (30):
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Second, for the purpose of lumping Egs. (29) and (30), the
differential should be substituted for the difference, and a sec-
ond order approximation is used for the integration of the
nonlinear friction term.

Ax =cAt

Fig. 1. Discretization scheme for the method of characteristics.

From the Fig. 1, the finite difference schemes of Egs (29)
and (30) are as follows:
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where p,;ip(x,t) , g ;:q0.t) . gl iq(xe)
4',:9"(x,t)) . x,=(-DAx, t;=jAt (Ax, Ar: mesh
size, and there must be ——t—=c )R T N (7)
gy, S, (&) (N : last grid point), ¢;, : modeled leaks ( The
leak is assumed to be constant.).

In terms of [10], the relationships between the real leak
(4" (), x*(j)) and the modeled leaks (q,.'fj ,xF) are as fol-
lows:
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The relationships are valid for a small leak g* . 2
In order to apply the STF, we select the state variables as %)
. 3 1.5
follows: =3
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And Egs. (31)- (34) can be written as the following:
. . , -0.5
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where u(j)=[/,(/) f,(N] =[/,(¢) f,¢¢;)] ,and H isa @
matrix with elements to be 0 or 1, to provide the interesting
measurements. Notice that there are 3 N -4 state variables and
g() consists of 3 N -4 equations.
To get the estimated state variables, the STF will be utilized, |
in which the matrix F (i) given by Eq. (14) is obtained by the
following: j
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The final state estimates are applied to Eqs (35) and, (36) to 1 , ) \ L N
estimate the leak and its location. 0 100 200 300 400 500 600
time [min]}
V. Simulation results (b)
A pipeline simulator is used to model noisy gas flow in a %

pipeline having the specifications [10]: L =90km;
D =0.785m; ¢ =300m/s; A =0.02. Zero-mean white Gaus- 80Ff 4
sian noise is added to the process equations and to the meas-
urements to simulate a stochastic system. At time ¢ =60 min a
leak of 2% (4kg/s) at 50km from the upstream end of the pipe 60} 1
is suddenly introduced. Simulation results are presented in
Fig.2. For comparison purpose we present also the simulation
results of the extended Kalman filter in Fig.3. % 40 "

Data used in the measurement simulator are as follows:
Boundary conditions, Ax =10km, p(0,#) =100bar=107 Pa,
q(L,t)=200kg/s. Three pressure measurements at 30, 60 and 20l
90 km are generated for the filter. l

Parameters used in the filters are as follows: Ax = 30km, 10r [ 1
x(j) = [pz.,' » Pijs Py G 95 9 q;/‘ 4 q;j]r'
Therefore we have H as follows: ‘

70+ :
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time [min]
1 0000O0O0TO0 (c)
H=/0 1 0 0 0 6 0 0], boundary conditions are Fig. 2. The simulation results with MSTF: (a) The modeling
001 00O0O0TOO leaks; (b) The estimated leak; (c) The estimated leak

location by Eq. (36).
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Fig.3. The simulation results with extended Kalman filter:
(a) The model/ing leaks; (b) The estimated leak;
(c) The estimated leak location by Eq. (36).

assumed known exactly. Initial conditions are x(0) = [94,
87.5, 80.5, 200, 200, 200, 0, 0]7. Process and observation

2
o, 0 0
noise covariance matrices: O=| 0 0';13 0 i, O'f, =
2
0 0 o,

106 (Pa) 2, cr: = 0.01(kg/s) 2, of = 0.0l1(kgls) 2,
R=021,,0% =106 (Pa).

From Figs. 2 and 3, it is obvious that the tracking ability of
STF is much faster than that of the extended Kalman filter.
The average estimated leak location using the STF is x =
50.2149 km, while the average estimated leak location using
Kalman Filter is x = 51.0310 km, with relative errors being
0.24% and 1.15% , respectively.

In order to analyze the simulation results in detail, we first
consider the modeling errors that occur in the pipeline model.
In fact, there exist two kinds of errors in the model. One has
been mentioned at the section 2, that is, simplification assump-
tions such as a constant diameter D , a turbulent flow and iso-
thermal condition, which are trivial because we can add more
equations and conditions to obtain more precise mathematical
models if necessary; for example, the thermal equations are
included in [11]. Another one is the approximation of finite
difference schemes with lumped parameters to differential
equations with nonlinear distributed parameters, which is
more difficult to overcome than the former because these er-
rors are inevitable and larger. Therefore, in the simulation, the
more precise model ( Ax =10km adopted) is used in simulator
while Ax =30km in the filters. The second kind of modeling
errors can be represented by these different choices in the
simulator and the filters. Besides, initial conditions are also
imprecise, which adds uncertainties to the model too.

Just as we discussed in the section 3, STF have suboptimal
fading factors, which is crucial to improve the filtering per-
formance. We have two ways to explain the superiority of STF.
First, we should notice that every element of the suboptimal
fading factor matrix A(i+1) is more than or equal to one.
Therefore, the present data acquire bigger weights while the
history data are attenuated. Consequently, STF can track the
present state more easily than the extended Kalman filter.
Second, the suboptimal fading factors are determined by the
orthogonality principle. Thus, no matter whether modeling
errors exist, whether noise is fit for the statistic assumptions,
and whether the initial conditions are imprecise, the orthogo-
nality principle will regulate the suboptimal fading factors to
force the filter to match the practical system states. Thereby,
the STF can track the abrupt changes of system states effi-
ciently. The simulation results verify exactly the above state-
ments.

VI. Conclusions
For a pipeline, both detection promptness and location accu-
racy of the leakage are very important because the former can
avoid further losses and the latter can save time to locate the
leaks and repair them. Especially for a long pipeline, the
minor relative error of location will lead to hundreds of meters
in practice, which is hard for inspectors to find real leak loca-
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tion. In this paper, a problem of detecting and locating leaks in
transmission pipelines has been discussed. The method used in
this paper is based on MSTF for the nonlinear distributed pa-
rameter system representing the gas flow in a leaking pipeline.
This nonlinear distributed parameter system is lumped by
using the method of characteristics and the obtained nonlinear
finite difference model is solved with the aid of an iterative
numerical method. As a fault model, artificial leak states have
been included. The MSTF is used as a state estimator in the
leak detection and location, which not only is robust to model-
ing errors and other uncertainties, but also tracks the state of
systems quickly. Therefore, we can get more accurate leak
location and also get the leak information more quickly. Ex-
tensive computer simulations verify the superiority of MSTF
to the extended Kalman filter.
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