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A GENERALIZATION OF THE
KRASNOSELSKII-PETRYSHYN COMPRESSION
AND EXPANSION THEOREM: AN
ESSENTIAL MAP APPROACH

Ravi P. AGARWAL AND DoNAL O’REGAN

ABsTrRACT. This paper introduces the notions of essential and inessen-
tial maps for countably k—set contractive maps. These ideas enable
us to establish a Krasnoselskii-Petryshyn compression and expan-
sion theorem in a cone for countably k—set contractive maps.

1. Introduction

This paper presents new fixed point results for countably condensing
maps. We begin with a fixed point result for self maps which follows
from a multivalued version of Monch’s theorem [5] established recently
by O’Regan and Precup [7]. Next we introduce the notions of essential
and inessential maps for countably condensing maps, and some proper-
ties of these maps will be established. In particular we show if a map
G is essential and G = F then F is essential. In Section 3 we present
a generalization of the Krasnoselskii—Petryshyn compression and expan-
sion theorem in a cone [3].

For the remainder of this section we present some preliminary results
which will be needed in Section 2 and Section 3. Let E be a Banach
space and Pg(FE) the bounded subsets of E. The Kuratowskii measure
of noncompactness is the map a : Pg(E) — [0,00) defined by

a(X)=inf{e>0: X CUL, X; and diam (X;) < ¢};

here X € Pg(E)}. Let Z be a nonempty subset of £ and F : Z2 —
2F (the nonempty subsets of E). F is called (i}. countably k-set
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contractive (k > 0) if F(Z) is bounded and «(F(Y)) < ka(Y) for
all countably bounded sets Y of Z; (ii}. countably condensing if F'
is countably 1-set contractive and a(F(Y}) < oY) for all countably
bounded sets Y of Z with a(Y) # 0.

In [7] O’'Regan and Precup established the following generalization of
Monch’s fixed point theorem.

THEOREM 1.1. Let D be a closed, convex subset of a Banach space
E and F: D — CK(D) a upper semicontinnous map; here CK(D)
denotes the family of nonempty, convex, compact subsets of D). Assume
there is an xy € D with the following property holding:

(1.1) { MCD, M=co({zp} UF(M)) and M =C with

C C M countable, implies M is compact.
Then there exists x € D with z € F(x).

REMARK 1.1. In Theorem 1.1 (and also in many of the results in
Sections 2 and 3) it is possible to replace the condition F: D — CK(D)
is upper semicontinuous with

F:D — C(D) is a closed map and F- maps
compact sets into relatively compact sets;

here C{D) denotes the family of nonempty, convex subsets of D.

Theorem 1.1 immediately guarantees a new result for countably con-
densing maps (this is a multivalued version of Daher’s theorem [2]).

THEOREM 1.2. Let D be a nonempty, closed, convex subset of
a Banach space E and F : D — CK{D) a upper semicontinuous,
countably condensing map. Then there exists x € D with = € F(z).

Proof. Let zp € D, M C D, M = co({zo} U F(M)) and M =C
with C € M countable. If we show M is compact, then (1.1) will hold,
so the result follows from Theorem 1.1.

Now since

C C co({zo} UF(M)),
each o € C can be written as a finite convex combination of points from
{zg} U F(M). Thus there exists a countable set Mc C M with

(1.2) C < co({zo} U F(Mc)).
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If a(Mc) #0 then

a(C) < afco({zo} U F(Mc)))
a(F(Mc)) < a(Mc) < (M)
(M) = a(C) = a(C),

=
a contradiction. Thus a(M¢g) =0 so from (1.2) we obtain,

a(C) € a(F(Mc)) < a(Mc) =0.
Thus C is compact. O

COROLLARY 1.3. Let D be a nonempty, closed, convex subset of
a Banach space E and F : D -+ CK(D) a upper semicontinuous,
countably k-set contractive (0 < k < 1) map. Then there exists x € D
with = € F(x).

2. Essential and inessential maps

Throughout this section, we will assume FE is a Banach space, C is
a closed, convex subset of F, and U is an open subset of C. We note
that some of the ideas in this section were motivated by a recent paper
of the authors [1].

DEFINITION 2.1. D(U,C) denotes the set of all upper semicontin-
uous, countably k-set contractive (0 < k < 1) maps F : U — CK(C);
here U denotes the closure of IV in C.

REMARK 2.1. It is also possible to consider the set of all upper
semicontinuous, countably condensing maps in this section. We leave
the minor adjustments necessary to the reader.

DEFINITION 2.2, We let Dpi(U,C) denote the set of all maps F €
D(U,C) with z ¢ F(z) for z € 8U; here 8U denotes the boundary of
Uin C. -

DEFINITION 2.3. A map F € Dy (U,C) is essential in Doy (U, C)
if for every map G € Dgy(U,C) with Glsgy = Flay we have that
there exists £ € U with z € G(z). Otherwise F is inessential in
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Doy (U,C) ie. there exists a map G € Dgy(U,C) with Glay = Flay
and z ¢ G(z) for z € U.

We begin with a simple example of an essential map, which is all we
need from an application viewpoint.

THEOREM 2.1. Let E be a Banach space, C a closed, convex subset
of I, U an open subset of C' and 0 € U. Then the zero map is essential

in DBU (ﬁ, C)

Proof. Let ¢ € Doy(U,C) with 6lay = {0}. We must show there
exists x € U with z € 6(x). Let D =726(8(U)} and consider the map
J: D — CK(D) given by

[ 8(x), zeU
Je) = { {Oa}:, otherwise.

Notice J : D — CK(D) is an upper semicontinuous, countably k-
set contractive map. To see that .J is countably k—set contractive let
1 C D be countable. Then since

J(§) Cco(d(@nT) U {0},
we have
a(J() < a@QnT)) < ka(NT) < ka(Q),

since @MU is countable.

Now Corollary 1.3 guarantees that there exists x € D with z € J(z}.
Notice z € U since 0 € U, so z € 0(x). O

Next we establish a homotopy property for essential maps.

THEOREM 2.2. Let E be a Banach space, C a closed, convex subset
of E and U an open subset of C. Suppose F, G € D(U,C} and assume
the following hold:

(2.1) G s essential in Day (U, C)

(2.2) r & AF(z)+ (1 - AN G(z) for €U and A€ (0,1].
Then F is essential in Day (U, C).
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Proof. Let H € Dgy(U,C) with H|sy = Flsy. We must show H
has a fixed point in U. Consider
B={zelU: zetH(z)+(1—t)G(z) for some t€[0,1]}.

Notice (2.1) guarantees that B # 0. It is also immediate that B is
closed (in C'). In addition (2.2) together with H|gy = F|ay guarantees
that BN U = §. Thus there exists a continuous g : U — [0,1] with
#(@U) =0 and u(B) =1. Define amap R, :U — CK(C) by

Ry (z} = pu(z) H(z) + (1 — u(z)) G(z).
Notice R, € D(ﬁ, C) since if Q C U is countable then since
Ru(Q) C co(H() UG()
we have
&(Ry(9)) < a(H() UG(R) = max {a(H(®)) , a(G(R)} < ka(®).

Also for € 8U we have R, (z) = G(z) so z ¢ R,(z) for z € 9U.
Consequently R, € Dayy(U,C) with Rulouv = Glay. Now (2.1} guar-
antees that there exists * € U with z € R,(z) (ie. = € p(z)H(z) +
(1 — pu(x))G(z)). Thus x € B and so u(z) = 1. As a result we have
z € U with =z € H(x). O

Next we will establish some “inessential” map type results. These
results will be needed in Section 3 to establish the generalization of the
Krasnoselskii-Petryshyn compression and expansion theorem.

THEOREM 2.3. Let E be a Banach space, C a closed, convex subset
of E with au+pveC forall >0, >0 and w,v€C,and U an
open subset of C. Suppose F € D(U,C) with the following holding:
(2.3)

there exists ve C with ¢ F(x)+6v forall § >0 and x € U

and
(2.4) there exists & >0 with z ¢ F(x)+dpv for x €U.
Then F is inessential in Day(U,C).

Proof. Let the map J be defined by J{z) = F(z) + éyv. Clearly
J € Doy (U,C) (noteif @ C U is countable then J(Q) C F(Q)+{dv}).
To show F is inessential in Dgy (U, C) we must show that there exists
a fixed point free § € Doy (U, C) with 8|sy = Flarr. Consider

B={zeU: z€F(z)+(1—t)dv for some t < [0,1]}.
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If B =0 then in particular F has no fixed points in U and thus F is
inessential in Dayy (U, C). It remains to consider the case when B # .
Notice B is closed. Also (2.3) guarantees that BN AU = @. Thus there
exists a continuous u : U — [0,1] with p(8U) = 1 and u(B) = 0.
Define a map N, : U — CK(C) by

Ny(z) = F(z)+ (1 p(z)) do v.

Notice N, € D(U,C) (note if 2 € U is countable then N,(Q) C
F(Q) +co ({6 v} U {0})). Also if = € OU then u(z) =1 so Nyloy =
Flgy. Consequently N, € Day(U,C) with N,|ay = Flay. We claim
N, is fixed point free on U. If this is true then F is inessential in
Dy (U,C). It remains to prove the claim. If there exists © € U with
z € Ny(z) = F(z) + (1 — p(z))dpv then z € B and so uf{z) = 0 ie.
z € F(z) + égv (this contradicts (2.4)). 0

Our next result generalizes Theorem 2.3.

THEOREM 2.4. Let E be a Banach space, C a closed, convex subset
of E with au+pveC foral «a >0, 3>0 and u,v e C, and U
an open subset of C. Suppose F € D(U,C) satisfies (2.3), and assume
the following condition holds:

(2.5)
there exists 0y > 0 with J, defined by J(z) = F(z)+ v,
{ inessential in Day (U, C).

Then F is inessential in Day(U,C).

Proof. Now (2.5) implies that there exists 7 € Day(U,C) with
Tlor = (F+ & v)oy and z ¢ 7(z) for z € U. Let v : U ~ CK(C) be
given by ~v(z) = 7(z) — dpv. Notice ¥|oy == F|sy. Consider

B={zeU: ze€vy(x)+(1—t)dv for some t e [0,1]}.

If B = then v has no fixed points in U, and since v|oy = Flay
we have that F is inessential in Day (U, C). It remains to consider the
case when B # 0. Notice BNOU = @ so there exists _a continuous
p:U —[0,1] with p(8U) =1 and p(B) =0. Let T, : U — CK(C)
be defined by
Ty(z) = v(=) + (1 — u{=z)) o v.

Clearly T, € Doy (U,C) with Tylsr = v|ov = Floy. Alsoif z € U and
z € Ty(x) then z € y(z) + (1 — u(z))fov,s0 z € B and p(z) =0 ie.
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z € y(z) + dov = 7(z) (a contradiction). Thus T, € Day(U,C) is a
fixed point free map with T),|sr = Flsy. Consequently F' is inessential
in Day(U,C). O

THEOREM 2.5. Let E be a Banach space, C a closed, convex subset
of E with au+ fBveC foral « >0, >0 and u,ve C, U an
open subset of C and 0 € U. Suppose F € D(U,C) and assume the
following conditions are satisfied:

(2.6) there exists &, >0 and v e C\{0} with &ve C\U
and

(2.7} ¢ AF(z) +6pv forall A€ (0,1] and z € dU.

Then ¢ (= F + dpv) is inessential in Day (U, C).

Proof. Let 1 be given by (z) = {dgv}. Now since dyv € C\U we
have v € Dy (U, C). Consider

B={zeU: zctF(z)+ v for some t¢ [0,1]}

If B = then ¢ has no fixed points in U so ¢ is inessential in
Day(U,C). It remains to consider the case when B # §. Now B
is closed and BN OU = @ from (2.7). Thus there exists a continuous
p:U — 10,1 with p(8U) =1 and p{B)=0. Let L,:U — CK(C)
be given by
Ly(z) = plz) Flzx) + by v.

Notice L, € D(U,C) and L,|sv = ¢|or, so L, € Dar(U,C). If there
exists £ € U with z € L,(z) then z € B so u(z) = 0ie. z € {§v}
(a contradiction since z € U and é¢v € C\U). Thus L, is fixed point
free on U and as a result ¢ is inessential in Day (U, C). O

3. The Krasnoselskii-Petryshyn compression and expan-
sion theorem for countably k—set contractive maps

In this section £ = (E,||.||) will be a Banach space and C will be
a closed, convex subset of ¥ with au+8v e C forall a>0, 3>0
and u, v € C. Let p > 0 with

By={z:z€C and lfz| <p}, S,={r: x€C and |zl =p}

and of course B, =B, U 8,
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THEOREM 3.1. Let E and C be ai_@bove and let v, R be constants
with 0 < r < R. Suppose F € D(Bpg,C) and assume the following
conditions hold:

(3.1) z ¢ F(z) for € SgUS,

(3.2) F: B, — CK(C) is inessential in Ds, (By,C)
' (ie. F|g- is inessential in Dg, (B;,C))

(3.3) F:Bg — CK(C) is essential in Dg,(Bg,C).

Then F has a fixed point in Q={z € C: r < |z| < R}.

Proof. Suppose F has no fixed points in 2. Now (3.2) implies that
there exists 6 € D(B,,C) with 8|s, = F|s, and z ¢ 8(z) for = € B,.
Let ®: B —» CK(C) be defined by

[ Fl), r<|oll <R
M)‘{ 0(), |lall < .

Notice ® € D(Bg,C) and @ has no fixed points in Bg (since § has no
fixed points in B, and F has no fixed points in §2). This contradicts
(3.3). O

Our next result is a generalization of the Krasnoselskii-Petryshyn
compression theorem [3, §8].

THEOREM 3.2. Let I and C be as above and let r, R be constants
with 0 < r < R. Suppose F € D(Bgr,C) and assume the following
conditions hold:

(3.4)
there exists v € C\ {0} with z ¢ F(z}+év forall 6 >0 and z € S,

and
(3.5) x ¢ AF(z) for z€ Sg and A€ (0,1).
Then F has a fixed point in {x € C: r < ||z|| < R}.
Proof. Suppose z ¢ F(z) for z € 5,USg (otherwise we are finished).
Then
(3.6) x¢ F(z)+d6v for § >0 and z €5,
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and
(3.7) z ¢ AF(z) for € Sk and X €[0,1].
Choose M > 0 such that

lyl| € M foral ye F(z) and z € B;.
Now choose §; > 0 such that
(3.8) |Sov| > M +r.
‘Let J : B, — CK(C) be given by J(z) = F(z)} + dov. Notice J €
Dg (B,,C) and also (3.8) guarantees that

zd J(z) for x € B,.

This together with Theorem 2.3 implies
(3.9) F:B, — CK(C) is inessential in Ds,(B,,C).

Theorem 2.1 guarantees that the zero map is essential in Dg,(Bg, C).
This together with Theorem 2.2 and (3.7) implies

(3.10) F:Br— CK(C) is essential in Dg, (Bg,C).

Finally (3.9), (3.10) and Theorem 3.1 imply that F has a fixed point in
Q; here Q={zeC: r<|z|<R}. O

In our next theorem C C E will be a cone. Let p > 0 with
Q={z€E: ||z] <p},

O ={zcE: |zl =a}
By,={z: ze€C and |z| < p},
and
Sp={z: z€C and |z| = p}.
Notice

B,=9,NC and S,=08c(Q,NC)=022,nC.

THEOREM 3.3. Let E = (E,||.||) be a Banach space, C C E
a cone and let || .|| be increasing with respect to C. Also r, R are
constants with 0 < r < R. Suppose F: Qg NC — CK(C) is a upper
semicontinuous, countable k-set contractive (here 0 < k < 1) map and
assume the following conditions hold:

(3.11) lyll < l|z|| for all y€ F(z) and z € gQrNC
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and
(3.12) lyll > llz|| for all y € F(z) and z € dpfX-NC.
Then F has a fixed point in CN{z € E: r < |z| < R}.

Proof. First we show (3.11) implies (3.5). Suppose there exists z €
Sk and X € (0,1) with z € A F(z). Then there exists a y € F(z) with
z=Ay and so

R=|lzl| = [Alllyll < llyll < ll=fl = R,

a contradiction. Next notice (3.12) implies (3.4). Suppose there exists
v € C\{0} with z € F(z) + dv for some § > 0 and = € S;. Then
there exists a y € F(x) with z =y + dv. Now since ||.{ is increasing
with respect to C' we have

lzll = lly + ol = llyll > Yl
a contradiction. The result now follows from Theorem 3.2. A

For our next two results we again assume C C F is a closed, convex
nonempty set with au+BveC forall >0, >0 and u,v € C.

THEOREM 3.4. Let E and C be as above and let 7, R be constants
with 0 < r < R. Suppose F € D(Bg,C) and assume the following
conditions hold:

(3.13) z ¢ F(x) for x€ SgRUS;

(3.14) F:B, -» CK(C) isessential in Ds, (B,,C)

and

(3.15) F :Bg — CK(C) is inessential in Dg,(Br,C).

Then F has at least two fixed points ¢ and xy with x9 € B, and
z1 €; here Q={z € C: r <|z| < R}.

Proof. From (3.14) we know that F has a fixed point in B,. Let
¥ = F|g and suppose ¥ : @ — CK(C) has no fixed points. Now (3.15)
guarantees that there exists an upper semicontinuous, countable k—set
contractive map 6§ : Bg — CK(C) with

f|s, = Fls, and z ¢ 8(z) for = € Bg.
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Fix p € (0,7) and consider the map ® given by

(4 0(8c), lel<p

P(x) = r=p) R—p)r—(R—r) |zl
@ = (R—;J()T—P(I-lilili)ﬂx:u ‘I’(( p(rip()umﬁl”m E), p< el <

| 9@, r<lol <R

Notice ® : Bg — CK(C) is well defined since if p < ||z < r then

< | Bmpr =t
(r —p) =

Note ® : Bg — CK(C) is a upper semicontinuous, countable k-set

contractive map (the proof of countably k-set contractive is essentially
contained in [6}). In addition

Plsp = Vlsp = Flsp =0lsp, and Plg=Yg=Flg
and @ has no fixed point in Bg (since 6 has no fixed points in Bg
and F has no fixed points in ).
Lets concentrate on @ : B, — CK(C) (i.e. ®|5). Now
Pls. = ¥ls, = Fls,

so ® € D(B,,C) with ®|s, = F|s, and ® has no fixed points in B;.
This of course contradicts (3.14). O

<R.

Qur next result is a generalization of Krasnoselskii-Petryshyn expan-
sion theorem [3].

THEOREM 3.5. Let E and C be as above and let v, R be constants
with 0 < r < R. Suppose F € D(Bg,C) and assume the following
conditions hold:

(3.16) ¢ AF(z) for €S, and A€ (0,1)

and

(3.17) 3v e C\{0} with z ¢ F(z)+dv forall 6 >0 and x € Sg.
Then F has a fixed point in {z € C: 7 < ||z £ R}

Proof. Assume z ¢ F(z) for z € S,USg (otherwise we are finished).
Then

(3.18) z¢ AF(z) for x€ S, and A €[0,1]
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and
(3.19) z¢ F(z)+6v for § >0 and z € Sg.

Theorem 2.1 guarantees that the zero map is essential in Dg, (B, C),
and this together with Theorem 2.2 and (3.18) implies

(3.20) F:B, -+ CK(C) is essential in Dg_ (B, C).
Let 4 > 0 be such that
(3.21) 160 v|| > sEuSp v} + R for all y € F(x).
z€SR

Note dgv € C\Bg. Let ¢ : B, — CK(C) be given by ¢(z) = F(x) +
Sov. Note (3.21) implies for A € [0,1] and x € S that

ldov+Ayll > R = |lz|| forall ye€ F(z),
and as a result
(3.22) z & AF(z) + fov forall Ae(0,1] and z € Sg.
Now (3.22) together with Theorem 2.5 guarantees that
(3.23) ¢ (= F +dv) : Bg — CK(C) is inessential in Dg,(Bg, C).
Also notice (3.19), (3.23) and Theorem 2.4 imply that
(3.24) F:Bgr — CK(C) is inessential in Dg(Bg,C).
Finally (3.20}, (3.24) and Theorem 3.4 guarantees that F' has a fixed
point in ; here ={z € C: r<|zff < R}. O

In our final theorem C C E will be a cone, and Q,, 98, (p > 0)
are as discussed before Theorem 3.3.

THEOREM 3.6. Let E = (E,||.||) be a Banach space, C C E
a cone and let ||.|| be increasing with repect to C. Also r, R are
constants with 0 < r < R. Suppose F : Qg N C — CK(C) is a upper
semicontinuous, countable k-set contractive (here 0 < k < 1) map and
assume the following conditions hold:

(3.25) l¥ll > llz|| forall y € F(z} and z € gQrNC
and
(3.26) l¥ll < llz|| for all y€ F(z) and z € Ot NC.

Then F has a fixed point in Cn{z € E: r < |z| < R}.
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Proof. Notice (3.16) and (3.17) are true so the result follows from

Theorem 3.5. |

REMARK 3.1. It is easy to combine the ideas in Theorem 3.3 with

those in Theorem 3.6 to obtain multiplicity results for F. We leave the
details to the reader.
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