HYERS-ULAM STABILITY OF THE QUADRATIC EQUATION OF PEXIDER TYPE

  • Jung, Soon-Mo (Mathematics Section, College of Science and Technology, Hong-Il University) ;
  • Prasanna K.Sahoo (Department of Mathematics, University of Louisville)
  • Published : 2001.05.01

Abstract

In this paper, we will prove the Hyers-Ulam stability of the quadratic functional equation of Pexider type, f$_1$(x+y) + F$_2$(x-y) = f$_3$(x) + f$_4$(y).

Keywords

References

  1. Functional Equations in Several Variables J. Aczel;J. Dhombres
  2. Internat. J. Math. Math. Sci. v.18 On a general Hyers-Ulam stability result C. Borelli;G. L. Forti
  3. Aequationes Math. v.27 Remarks on the stability of functional equations P. W. Cholewa
  4. Abh. Math. Sem. Univ. Hamburg v.62 On the stability of the quadratic mapping in normed spaces S. Czerwik
  5. Stability of Mappings of Hyers-Ulam Type The stability of the quadratic functional equation Th. M. Rassias;J. Tabor(eds.)
  6. Abh. Math. Sem. Univ. Hamburg v.57 The stability of homomorphisms and amenability, with applications to functional equations G. L. Forti
  7. Aequationes Math. v.50 Hyers-Ulam stability of functional equations in several variables
  8. Internat. J. Math. Math. Sci. v.14 On stability of additive mappings Z. Gajda
  9. J. Math. Anal. Appl. v.184 A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings P. Gavruta
  10. Trans. Amer. Math. Soc. v.245 Stability of Isometries P. M. Gruber
  11. Proc. Natl. Acad. Sci. v.27 On the stability of the linear functional equation D. H. Hyers
  12. Stability of Fundtional Equations in Several Variables D. H. Hyers;G. Isac;Th. M. Rassias
  13. Aequationes Math. v.44 Approximate homomorphisms D. H. Hyers;Th. M. Rassias
  14. Proc. Amer. Math. Soc. v.3 Approximately convex functions D. H. Hyers;S. M. Ulam
  15. J. Math. Anal. Appl. v.204 On the Hyers-Ulam-Rassias stability of approximately additive mappings S. -M. Jung
  16. Dynam. Systems Appl. v.6 Hyers-Ulam-Rassias stability of functional equations
  17. Internat. J. Math. Math. Sci. v.24 Quadratic functional equations of Pexider type
  18. Abh. Math. Sem. Univ. Hamburg v.70 Stability of the quadratic equation of Pexider type
  19. C. R. Acad. Bulgare Sci. v.45 On the stability of the Euler-Lagrange functional equation J. M. Rassias
  20. Proc. Amer. Math. Soc. v.72 On the stability of the linear mapping in Banach spaces Th. M. Rassias
  21. On the stability of the quadratic functional equation and its applications
  22. Rend. Sem. Mat. Fis. Milano v.53 Proprieta locali e approssimazione di operatori F. Skof
  23. Science Editions Problems in Modern Mathematics S. M. Ulam
  24. A Collection of Mathematical Problems