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ON THE EXTENSION PROBLEM IN THE ADAMS
SPECTRAL SEQUENCE CONVERGING TO BP,(Q?§%+1)

YOUNGGI CHOIL

ABSTRACT. Ravenel computed the Adams spectral sequence con-
verging to BP.(01252"1) and got the Ex—term. Then he gave
the conjecture about the extension. Here we prove that there
should be non-trivial extension. We also study the BP.BF co-
module structures on the polynomial algebras which are related
with BP,(282n+1),

1. Introduction

The generalized cohomology theory complex cobordism is defined by
the unitary Thom spectrum MU. The spectrum MU for complex bor-
dism has played an important role in stable homotopy. Localized the
spectrum MU at a prime p, it splits as wedges of suspensions of the
similar spectra BP which we call the Brown-Peterson spectrum. The
corresponding homology theory for this spectrum is called the Brown-
Peterson homology, the BP-homology for short. The B P theory was also
proven to be very useful in stable homotopy, especially Adams Novikov
spectral sequence. But practically it is never easy to compute the BP
theory. Like the ordinary homology, it is essential to understand the
BP-homology of 2252"+1, Ravenel computed the Adams spectral se-
quence converging to BP,(Q28%"*1) and got the E—term. Then he
gave the conjecture about the extension [7)].

In this paper we prove that there should be non-trivial extension in
the spectral sequence. We also study the BP,BP comodule structures
on the polynomial algebras which are related with BP,(282"+1),
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2. Preliminaries

In this section we will give some basic facts about the spectra MU,
BP. The general reference for these spectra is the book by Ravenel[5].
According to Brown’s representation theorem, every homology theory
has its corresponding spectrum, a collections of spaces with structure
maps. The spectrum for the complex bordism is the sequences of the
Thom space MU (n) of the classifying space BU(n) for the unitary group
U(n) with the structure maps £2MU(n — 1) —» MU(n) induced by the
map from BU(n - 1) with the universal bundle &,_; @ C into BU(n)
with £,. Exploiting the map CP>® ~ MU(1) — MU and the fact that
H,(CP*;Z) is free on 3; € Hy(CP*>; Z), i > 0, we get

H.(MU; Z) = Z[b1, bs, ... ].
For p = 2 the dual Steenrod algebra is A. = Z/(2)[{1,&2, -] with
& =2' —1, and for p odd primes A, = Z/(p)[€1,E2, | ® E(m0,71, )

with & = 2(p’ — 1) and dim 7, = 2p* — 1. Using the Adams spectral
sequence with

Ea =Exta, (Z/(p), H.(MU; Z/(p)))

converging to p-primary part of m,(MU) and the nice A. comodule
structure of H,(MU), Milnor[3] computed

71'*(MU) =MU* :Z[$2,$4,...]

where dim z»; = 2i. Localized the spectrum MU at a prime p, Quillen[4]
constructed a multiplicative idempotent map ¢ of ring spectra:

€ MU(p) - MU(p}.

For any space X consider the map e A1l : MUg A X — MUg A X,
Then the image of €, becomes a natural direct summand of MU.(X) )
and it satisfies all the axioms for the generalized homology theory, so
by the Brown’s representation theorem it has its representing spectrum.
We denote it by BP and the homology theory by BP.(X) with

7. (BP) = BP, = Zyy[v1,ve,. . -]
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where Z,,, denotes the integers localized at p and dim v; = 2(p* — 1).
There are new polynomial generators m,, for H,(MU) satisfying m,, =
[CP™|/(n+ 1) € T2, (MU} ® Q such that

H*(BP) = Z(p) [mp_l, Mp21y--- ]

Let £; € BP, ®  denote the image of m,:_, under the Quillen idem-
potent € : MUy — MU, where £y = 1. The polynomial generator
v; € BP, are related to the #; recursively by the formula of Araki [5],

P
pﬂn = E Ewn_i .
0<i<n

Quillen found some strong connection between the bordism theory and
the formal group law. There is a formal group law F(z,y) € BP.[[z, ¥]]
associated with BP given by

F(x,y) = exp (log z + log y)

where logz = 3,5, 2,2 and exp (log z) = z. We will denote exp
(3;w0loga;} by Y7 a;. We recsll the following result due to Quillen.

THEOREM 1. [4,6] As a ring,
BP,BP = BP,[t1,t3,- -]

where t; € BPy(,i_1yBP.
(i) The left unit ny, is the standard inclusion BP, — BP,BP while the
right unit ngr is given by

k o
nr(l) =Y Gth_,.
i=0

(ii) The counit € hase(1) =1, g(¢;) =0, ¢ > 0.
(iii) The coproduct ¢ Is computed by

k
i h h+41
St = > 4l off
=0 htitj=k
ar

Sty =3 e

i>0 1,520
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2. BP,BP comodule structure

We recall the following definition in [6].

DEFINITION 2. A left comodule over a Hopf algebroid (S, L) is a left
S-module M together a left S-linear map ¢ : M — ¥ ®s M which is
counitary and coassociative, i.e., the composite

M—"  TesM =2, Ses MM
is the identity on M and the diagram

M ———w—> T®s M

J'zb llz®w

YesM 28 v e v es M

commute. In this case, ¥ is called a left L—comodule map. A left
comodule M over a Hopf algebroid (S,X) is usually called a left -
comodule M. An element m € M is primitive if {(rm) = 1@ m.

We need to recall the following well-known fact.

THEOREM 3. [1] There are choices of generators x;, y; such that

(a) For p =2, H (284, Z/(2)) = Z/(2)[z, : i 2 0]
Bri, =z fori>1

(b) For p odd primes,

H. (25241 Z/(p)) = E(wi 1 > 0) ® Z/(p)[y: : i > 0]

Bzipn=y; fori>1
Pyi+1 = yf fori>1

where dim z; = 2np* — 1 and dim y; = 2np* — 2.

Using the Adams spectral sequence converging to m,(BP AQ2§27+1)
= BP,(28?"+1) with

By =Exta,(Z/(p), H.(BP AQ*5*™ 1 Z/(p)))
=Exta, (Z/(p), H.(BP; Z/(p))) ® H.(¥*S™%; Z/(p)) ,

Ravenel showed that the spectral sequence collapses at the Ex—term and
got the following result.
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THEOREM 4. [7] For each prime p and each integer n > 0, the Foo—
term of the Adams spectral sequence converging to BP,(§25%"+1) is

E(z0) ® BP.[y; : i > 0]/{(r1,72,---) wherer; = Z vJ

0<g<i

The E of the Adams spectral sequence is the associated bigraded
module for I-adic filtration of BP, (9252”+1), that is, E3 = I°BP,
(Q2827+1) 1+ where vy = p and I = (p,vy, vz, - ). Since y; € ES2
and v; € EL* for each i, j, we have that in BP,(225%"+1)

3 vjyfij=0modI2.

0<j<i

For the extension problems arising from above relations, Ravenel gave
the following conjecture.

CONJECTURE 5. [7]
BP,(8* 1) = E(xy) @ BP.[y; : i > 0]/L,
where L is generated by the homogeneous components of the formal

. F &
group law sum expression 3 o, Uiy -

Let My = BP,[y; : + > 0}. Then we can define the left BP,BP—
comodule map on M; using the coproduct of BP,BP.

THEOREM 6. M; is a left BP,.—module with a left BP,-linear map
% : My — BP.BP ®pp, M,

Zij i} ZF tz Q yfm

3>0 i=0,j>0

which is counitary and coassociative, that is, My is a left BP.BP co-
module.
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Proof. First we show the counitarity, (e ® las,) © ¢ 2 ip, using The-
orem 1. Taking log for v : 2j>0yj ZiZO,j>0ti ® yj , we have

W Y )= S el ey

§20,§>0 4,5>0,k>0
= Y nr{t)®y .
i20,j>0
Then we have
(E@ 1) 0w Y fzyJ =@l Y. nrt) YY)
z>0,3>0 i20,5>0
=) Y. 184y
120,70
- Y ret
i20,5>0
> D b
i20,j>0

Hence we have (¢ ® 1as,) o ¢ = ip,. Next we show the coassociativity,
(lpp.ap @)oY = (A® lag) 0.

3

Bl Y, &t o)

(A®Ly)oy( S tyh)

i20,9>0 i,520,k>0
_ Pt piti i+i+k
= ) 4Lt @1 ®yh,
i,5,k>0,m>0
i it
== 3P P
= E 1@t Q@
i,j>0,k>0

On the other hand, we have '
i 1 i+
(1pp, BP @ %) 0 ¥( Z Ly, ) = (lep.pp @ Y){ Z LY ®yy ")

i>0,7>0 i,j>0,k>0

=(1r.er@Y) Y. 7a(l)® yfi)

i>0,j>0

= (sr.or @) Y, 184a7)

i20,5>0

i idg
= 3 104t @y
1,720,k>0
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Then we have (1gp, gp V)01 = (A ®1as, )} 0. Hence My is a left
BP,BP comodule, O

THEOREM 7. I = (ry,re,- -} is an invariant ideal, that is,

W(I) c BP,BP ®gp, I

Proof. We have that

F F P
LD ST

n>0 20,50

From the Araki’s formula, pln, = 3 g<;cy, Eivf:_i, we have

Sy = Y pr?

1,720,k>0 i20,j>0

Taking exp to both sides, we have

S v —exp (3 plat).

i>0,5>0 120,7>0

Taking log both sides, we have } ;4 ;5 Ei'rfi =2 i>0,>0 pliyy " In the

proof of Theorem 6, we know that 1,b(£’iyf1) = 1@ biy; " that is, &yt " is
comodule primitive. Hence

W Y e y=u( Y pta)=10 Y. plyf =18 Y. bt

i>0,i>0 i>0,j>0 i>0,§>0 i>0,5>0

Therefore ¢/(r? ) € BP.BP ® I for all i > 0,j > 0. Taking i =0, we
have ¥(r;) € BP,BP ® I for all j > 0, so that ¢(I) C BR.BP ® 1.
Therefore I = (r1,7g,---) is an invariant ideal. O
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COROLLARY 8. M,, which is defined by BP.[y; : ¢ > 0}/(r1, -« ,7n)
is also a left BP,BP comodule for each n.

Here we confront the following two questions.

Question 1. Is there only unique way to give a comodule structure on
My?

Question 2. Given a comodule structure on My, is each comodule M,
uniquely determined from comodule M, _;?

Those questions have the deep meaning because of following reason.
Assume that there is unique way to give the comodule structure on Mpy
and each M,, is uniquely determined from M, _;. Then from M, we
can construct uniquely M = BP,[y; : 4 > 0]/(I). This means that there
is no extension problem in the Adams spectral sequence converging to
BP,(Q25?"*1) in Theorem 4. Then BP,(225%"*1) would be E(zo) ®
BP,[y; : i > 0]/(r1,72, ), so we would solve the long standing unsolved
problem, BP,{228%7+1).

In the next section we will show that it is not true, that is, there should
be nontrivial extension. In fact, it is not easy to answer above ques—
tions directly because of the following reason. Let M, - = BP,[y; :

0]/(ry,- - ' Tn1,7 n) be another comodule determined from M, _;. Then
n="Tn— r must be comodule primitive in M,,_;. Hence e, must be
0,2(p™—1)

in Ext%i,(*p BP = (BP,, M,_1). Therefore we should compute Extgp 5p
(BP,, M, _,) for each n. But it is never easy to compute those groups
for all =n.

3. Some approach to the conjecture for BP,(0252"+1)

Now we show that BP,(Q28%"1T1) is not equal to E(z¢) ® BP.[y; :
i > 0]/(r1,72,---). Then this implies that there should be non—trivial
extension in the Adams spectral sequence converging to BP, (Q2§**1).
And this also implies that there exist various comodule structures on My
or given comodule map, each comodule M, is not uniquely determined
from M, _;.

Now we consider the following fibration.

Q38U/SU(n) ——— Q3SU/SU(n +1) i, Q2gAntl
From (7], we have

BP,(Q¥SU/SU(n +1))=BP.[z2(n+s) 1 1 2 0].
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where dim 23,15y = 2(n+4). From now on, we use the following notation
to denote generators for each space §¥*SU/SU(n + 1).

BP*(QSSU/SU(TL + ].))=BP*[ZR+1’2(R+2') 11 Z 0] .

LEMMA 9. [7] The polynomial generators
Q; € B.Pg(npz_l)(QSSU/SU(n)) and ¢; € BPz(npi—l) (QSSU/SU(R + 1))
can be chosen such that
(fa)olas) = 3 vyl ; mod I%
Jj=0
(hn)slci) = s -

Moreover the polynomial generators in other dimensions can be chosen
so that (fn)s(2n,n-1) =0 and (fn)«(2nn+i) = Zn41,n4s for e 2 0.

Assume that BP, (252"} is equal to E(xo)® BP.jyi : i > 0l
/(r1,732,+ -+ ). Then we have

(1) (Fa)olas) = S wpct .

=20

By the study for the coalgebra structures through (fn)., we will show
that the relation (1) can not be happen.

In general, BP,(X) does not have the coproduct structure for any
space X since BP theory does not have a Kiinneth isomorphism. But
for X(n) = Q38U/SU(n), BP.(X(n)) is a free BP,—module. So we
have

BP.(X(n) x X(n)) = BP.(X(n)) ® BP.(X(n)).

Hence BP,(X(n)) has the coproduct structure. So we have the following
diagram.

BP.(X(n)) —"—  BP.(X(n))® BP.(X(n))
(2) (m.l (fn).®(fn)*J’

BP.(X(n+1)) —=— BP,(X(n+1)) ® BP.(X(n+1))
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Here we study the case of n = 1. The other cases of n also follow
by the same way. Note that Q3SU = BU x Z. We recall that H,(BU)
and BP,(BU) is bipolynomial Hopf algebra which is isomorphic as Hopf
algebra to its own dual [2]. That is, BP,(BU)} = BP,[#2; : i 2 1] with
V(21,2p:) = z1,2; where V is Verschiebung map and 71,2¢ is primitive if
pti

If there is no extension in the Adams spectral sequence converging to
BP,(Q28*+1) then from Lemma 9 and the relation (1) we have

22, if i # 2(p" — 1)

ZUSjSk-—l szg;(pi_,-_l) if i = Q(pk - 1)

(3) (fn)*(zl,i) = {

Now we study the coalgebra structure of z 2,1y through (f;).. From
(3), we have that

(fl)*(z1,2(p—l)) = P%32(p-1)
(fl)*(zl,Z('pz—l}) = P2 2pr-1) t+ vlzg,z(p_l)

2
(f1)e(21,2009 1)) = P222p3 1) + V125 501y + V225 5,1y -

Since p  p* — 1, each Z1,2(pi—1) 18 primitive for ¢ > 1. Then from the
commutativity of the diagram (2}, we get

D(z2,2(0-1)) = 22,20-1) © 1 + 1 ® 23 3(p-1) -

Now we consider the coalgebra structure for Z9,2(p2—1). We have

((f1)« ® (f1)-)(Dz1,202-1)))
=((f1)* @ (fl)*)(zl,2(p2—1) ®1+1 ® 21,2(3)2—1))
:@22,2(1,2—1) + UIZ§,2(p—1)) R1+1R (pz2,2(p2_1) + 'Ulzg,z(pfl))

On the other hands, we have

(Do (fi)e) (21,202 -1))
:A(pz2,2(p2A1) +1 25,2(,3_ 1))
=0(pz2202-1)) + 11D (22,2(p-1))F
=pA(z290p2—-1)) + v (2220-1) ® 1 +1®@ 20205 1y)°
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Since ((f1)x ® (fi)x)} 0 & = Ao (f1)s in the diagram (2), we get
Blz20m2-1)) = 22,202 -1) @1+ 1@ 22202-1)
1 p-l D , .
- E(Z (J) z;)?(p—l) ® zg,ngp_]_)) )
=1
Note that the coefficient & (¥) for 1 < j<p—1isin Zg,).
Next consider the coalgebra structure for zy p(p3_1). We have

(F1)2 ® (f1)e 0 D212 -1))
=(f1)s ® (f1)a (21,205 -1)) @ 1+ 1@ 21 9058 1))

=(p229-1) + V17 0 1) + V2 ) @ 1
+1& (p222(p2-1) + vlzg,Q(pz—l) + ”2zg?2(p—1))
On the other hands, we have
A((fr)« (21202 -1)))
=A(pza2ps-1) + Ulzg,z(phn + “225,22(;;—1))

=pA(2z39(p3-1)) + ’UlA(zg,z(pz_n) + U2A(Z§,2(p—1))
=pA(22205-1)) + V1[222(p2-1) ® L + 1 ® 23 2(2-1)

- ‘Z( )"‘22(::2 ) @ Azl
2
+ va(22,2(p-1) © 1 + 1 @ 22 00p-1)
Since (f1)s ® (f1)« © & = Ao (f1). in the diagram (2), we get

A(z2,2{p3—1})
=222(3-1) @1+ 1@ 222031y + -

1 (p—1) (p—1)p
+ 5(”1"5 20-1) ® Z237-1) + V1 Zg gt 1) @ g ppa_y)) oo

Here we have that the coefficient of 25 521 ®2,, e 1)p ) and 27 2_(;2;11) ®

2}2@2_1) in Az ap8-1)) 18 Efvl But this is a contradiction because
the coefficient groups of the BP homology are Z [v1,vs,...]. Hence
BP,(Q25%*%1) can not be E(zq) ® BP,[y; : ¢ > 0]/(r1,72,+- ), that is,
there must be non-trivial extensions in the Adams spectral sequence.
Therefore we have the following results.
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THEOREM 10. There exist non-trivial extensions in the Adams spec-

tral sequence converging to BP,(Q*S?"t1). Furthermore there exist var-
ious comodule structures on My or given comodule map, each comodule
M, is not uniquely determined from M, _, where M,, = BP.[y; : i >

O]/(Tla e srn)‘
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