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ON THE LARGE AND SMALL INCREMENTS
OF GAUSSIAN RANDOM FIELDS

ZHENGYAN LIN* AND YONG-KAB CHOI™

ABSTRACT. In this paper we establish limit theorems on the large
and small increments of a two-parameter Gaussian random process
on rectangles in the Euclidean plane via estimating upper bounds
of large deviation probabilities on suprema of the two-parameter
Gaussian random process.

1. Introduction and Results

The limit theorems on the increments of Wiener processes and Gauss-
ian processes have been investigated in various directions by many au-
thors [1~3, 7~10, 13~17, 19, 20, 23~29, 31]. Furthermore, the moduli
of continuity for Gaussian processes and Ornstein-Uhlenbeck processes
have been intensively studied recently by Cs6rgd and Shao [11], Cséki
and Csérgd [5}, Cséki et al. [6] and Csérgd et al. [12]. Concerning the
limit theorems for the increments of two-parameter Wiener processes
and Gaussian processes on rectangles, we refer to Csérgé and Révész
8], Lin [22], Kong [18], Csérgd et al. [13] and Zhang [30], ete.

We are interested in studying limiting behaviors for the increments
of a two-parameter Gaussian random process on rectangles in the FKu-
clidean plane, whose increments are, specially, commposed of mixed types
that one side of the rectangle increases to infinity and the other side
decreases to zero as time passes by infinitely. Thus, as time goes to
infinity, each increment brings to both large and small increment for
one-parameter Gaussian random process, respectively.
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The starting point of this work was some limit theorems on the in-
crements of a two-parameter Wiener process in the books of Cstrgo and
Révész [10], Lin and Lu [24]. Our results for the two-parameter Gauss-
ian random process in this paper are different from those results in the
previous books because the structures of the above two processes differ
from each other.

To show the difference more concretely, we shall first quote ane of the
results in the books of Cs6rgd and Révész [10], Lin and Lu [24]: Let ar
be a nondecreasing function of T(0 < T' < ) for which

(a) O<ar <T,

(b) T/ar is nondecreasing on 7.

Let Ry = R{ar) be the set of rectangles

R=[z1,23) X [y1,92) (0<z <22 <VT,0<y, <ya <VT)

for which A(R) = (z2 — z1)(y2 — y1) < ar. Let R% = R*(ar) C Rr
be the set of those elements R of Ry for which A(R) = ar. For a two-
parameter Wiener process {W(z,y), 0 < z,y < co}, define the Wiener
measure of a rectangle R = [x1, 2] X [y1,%2] by

W(R) = W(za,y2) — W(z1,y2) — W(z2,51) + W(z1, 1)

THEOREM A. ([10], [24]) Let {W(z,y), 0 < z,y < oo} be a two-
parameter Wiener process, and let ar be a nondecreasing function of T
satisfying above conditions {a) and (b). Then

limsup sup vy¢|W{R)| = limsup sup yr|W(R)| = 1 a.s.,

T—oc RERT T—o0
-1/2
where y7 = (2ar(log(T/ar) + loglog T)) .
If ar also satisfies the condition
(c) Lmp_.eolog(T/ar)/loglog T = oo,
then
lim sup yp|W(R)| = lim sup yr|W(R)| =1 a.s.
T—oo ReRy T—oo RCR:

For our purpose, let us introduce a limit theorem for the large incre-
ments of one-parameter Gaussian process and a modulus of continuity
(i.e. a limit theorem for the small increments) of the Gaussian process:
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Let {X(t), 0 <t < oo} be an almost surely continuous centered, one-
parameter Gaussian process with X(0) = 0 and stationary increments

o* (|t — s} := E{X(t) — X(s)}2.

Assume that ¢ is a nondecreasing continuous, regularly varying function
with exponent a at 0 and oc for some 0 < @ < 1 and that ¢ satisfies
fo )dy < 00. Let ar be a nondecreasing function of T{0 < T <
o0} for Whlch

(a) O<ar<T,

(b) T/ar is nondecreasing on T,

(¢) limp_.o log(T/ar)/loglog T = oc.

THEOREM B. (large increment theorem) ([L], [7]) Let X(¢) and ar
be as above statements. Assume also that for t > 0, either
(d) o?(t) is concave

or
(e) o?(t} is twice continuously differentiable which satisfies
t
’dtza t)‘ g) for some ¢ > 0.
Then
Xt — X[t
. [X(t +ar) - X(2)

T—oo g<t<T—ar 12(l0g(T/ar) + loglog T)}/20(ar)
= lim sup sup X (E+5) = X(2)]

T—oo g<t<T—ar 0<s<ar {2(log(T/ar) + loglog T)}1/20(‘1T)
=1 a.s.

THEOREM C. (modulus of continuity) [7] Let {X(¢), 0 <t <1} be
an almost surely continuous, centered Gaussian process with X(0) =0
and E{X(t+h) — X(t)}? = Coh?* > 0 for some Cy > 0 and 0 < a < 1.
Then

X (t+R) — X(2)]
%L‘%o<ft“1’ » {210g(L/h) 120 (h)

= lim sup sup [X (¢ +9) — X ()]
h—0p<i<i—ko<s<h {210g(1/h)}/ 20 (h)

=1 a.8.
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In this paper we are interested in combining Theorems B and C to
get a mixed type’s result on the two-parameter Gaussian process whose
increments are defined on the rectangles of which one side increases to
infinity and the other side decreases (to zero) at time passes by infinitely,
whose results are different from Theorem A. ' '

Throughout the paper we shall always assume the following state-
ments: Let {X(z,y), (z,y) € R3} be an almost surely continuous,
centered two-parameter Gaussian process with X{(0,0) = 0 on the prob-
ability space (£2,8, P), where R} = [0,00) x [0,00). For two distinct
points (z1,y1) and (z2,y2) in RY, let X (z,y) have the stationary incre-
ments

E{X(mluyl) - X(a:?:yZ)}z = 0-2(\/(331 - m2)2 + (yl - y2)2):

where o(t),t > 0, is a nondecreasing continuous and regularly varying
function with exponent & at G and oo for some 0 < o < 1, ie.

(1.1) a(t) = t°l{t), t>0,

where [(f) is a slowly varying function with exponent o at 0 and oo.
Further assume that there exists ¢y > 0 such that

2 2
do?(x) SCOU (:c)’ 5 0.
dx T

(1.2)

Then the process {X(z,y), (z,y) ER3}isa generahzatmn of the two-

parameter fractional Lévy Brownian motion with ¢?(t) = ¢2* (cf. [21]).
Let us consider the rectangle R := R(s,t,u,v) := [s, s+¥] X [u, u+v] C

R? for all s,u > 0 and t,v > 0. Define the increment X (R) on R by

X(R) == X(R(s,t,u,v))
=X(s+tutv)-X(s,ut+v)— X(s+tu)+ X(s,u).
Using the relation ab = 1 (a? + b — (a — b)?}, it is easy to see that the

standard deviation of X(R) has the translation invariant with respect
to s and u, that is,

S(t,v) = { B(X(R(s,t,u,v))*}**

(1.3) = {E(X(R(s + h, t,u+ ho,v)))°}/*
= {2(c?(t) + o?(v) — A(VE2 + )} > 0
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for all hl, h.g 2 0.

For 0 < T < oo, let Ar and ar be nondecreasing functions, and By
and b7 be nonincreasing functions of T' for which

(i) O0<ar <Ar andO<bT§BT,

(i) limsupy_,., arbr < oo,

(111) li‘.l’fthr1_,o0 ar = Q.
For convenience, we denote:

ArB
Gr = T4T,
br

Br = {2(log Gr + loglog Ar +log | log BTI)}1/2,

where logz = In(z V 1) and m V n = max{m,n}. Set

1 X (R(s,ar,u,br))|
Diap,br}= su su ;
(ar, br) 05351?% osungT S{ar,br)Br

X(R(s,t
D* (a‘T: bT) = sup sup sup sup I ( (3, 2 Uy U)N )
0<s<Ap 0<t<ar 0<u< By 0<v<by S(ar,br)0r

The main results are as follows:

THEOREM 1.1. Let ay and by satisfy above conditions (i)~(iii) and
(iv) limz_.co log(Grb%)/(loglog Ar + log | log Br|) = oo.

Then we have

(1.4) limsup D*(ar,br) <1 a.s.

T—o0

THEOREM 1.2. In addition, let the following conditions be satisfied:
(v) there exists a positive constant ¢, such that
|d20r2 (x) o?(z)
2 1

=0
dx? ’ T

x>0,

(vi) |log(ArBr)/logbr| — oo and By /br — o0 as T — .
Then we have

(15) 1121}1 infD(aT,bT) >1 a.5.

Combining Theorems 1.1 and 1.2, we immediately obtain the follow-
ing limit theorem:
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CoroLLaRry 1.3. Under the assumptions of Theorem 1.2, we have

lim D*(ar,by) = lim D{ar,br)=1 a.s.
T—00 T—oo

REMARK. From the proofs of Theorems 1.1 and 1.2 we shall see that
conditions (1.2) and (v) can be repalced by

2 _ .2 2
(1.2) o (z2) — " (1) < coa (22) for all large z1 < o
Lo — X1 I
and
(v)

for all large z; < 22 < 23,

o02(z3) — 20°% (2} + 02(m1)| <. o?(x3)
(z3 — z2)(z2 — 1) =g

respectively.

ExaMPLE 1.4. Let {X(z,9) : 0 £ ¢ < 0,0 £ y < oo} be a
two-parameter Lévy Brownian motion with « = 1/2. For T > e, let
Ap = T,ar = 2(log T)?, By = (logT)~! and by = (log T} 2. Then all
conditions of Corollary 1.3 are satisfied. Thus, noting Lemma 2.1 below,
we have

lim  sup sup_ (logT)"/*
T—oe (<s<T 0<u<(logT)—!

x | X(R(s,2(og T)?,u,(log 7)™ ?))| =2 as.

2. Proofs
The following Lemmas 2.1~2.5 are essential to prove the theorems.

LEMMA 2.1. Let o(-) be a nondecreasing continuous regularly vary-
ing function with exponent o (0 < o < 1) at 0o. Suppose that condition
(1.2) is satisfied. Then

- §%(t,v)
(2.1) Jm, o2(v) 2
uft—0
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Proof.
\/tg-l-'u2 2 \/15§+'ui 2
02(\/t2+v2)—02(t)=f é%ldmgco/ a—m(i)dx
¢ t
2T
<’ (\/tt +v )( ET )

<3

which implies that

,U2a

co (N2 (£ + v%)" (VT +0?) 2
=16, (l(\/t2 el MY v2)))
—0 as t— o0 and v/t — 0.

Here we have used the following well known fact for a slowly varying
function: for any function A = h{z) — 0 as x — oo,

. Rl . Kel(hz)
(22) A e T Ty T

0, Ve>0. 0

Let D={t:t = (t1,...,¢n}a; <t; < b,i =1,2,...,N} be a real
N-dimensional time parameter space. We assume that the space I has
the usual Euclidean norm || - ||, that is,

N
It —sli? = >t — s0)2.
i=1

Let {X(t) : t € D} be a real-valued separable Gaussian process with
EX(t) = 0. Suppose that

0<supEX(t)2 =T < o0
tch
and
B{X(t) - X(s)}* < *(lit ~sl),
where () 1s a nondecreasing continuous function which satisfies
e zp(e‘yg)dy < 0o,

The following Lemma 2.2 is a version of Fernique’s inequality ({14]),
which is proved in [4].
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LEMMA 2.2. Let {X(t) : t € D} be given as the above statements.
Then, for A> 0, £ > 1 and A > /2N log2, we have

P{sup X(t) > as(F +2(V2+1)4 fﬂm (VN A27¥) dy)}

teh
N
< (2" + B) (H(bi S iy 1))(12/2,

i=1

where B=3% ", exp{—:z”_l (A% — 2N log 2) }

LEMMA 2.3. Let the condition (v) of Theorem 1.2 be given. Let
a be a nonzero real number. For positive numbers N,m,r and 0, let
b=Nm# " —67">0, ¢c=Nm# " andd= Nmf~" +6~". Then, for
some C > 0,

JVITE pLE: 2/ T 2
‘f do’(z) _/ dg2($)‘ < 00(2—a+_lgf2f,
JaTEE . a® + b2

+b

The proof is similar to that of Lemma 2.5 in (3], and hence, is omitted.

The following lemma is a two-parametric modification of Corollary
4.2.4 in [20].

LEMMA 2.4. Let {&; : 4,7 = 1,2,-+-,n} be jointly standardized
normal random variables with Cov(£;;, £y 5) = Aij“" such that

=  max Ai!-j’ < 1.
(m)#(@u;‘*)' 1 I

Then, for any real number u and integers 1 < l; <y < -+ <l < n
andlgll<lg<---<lgSnW1'thf39§n:

Ty
P{mes, i G < <o)

2

ol [T
+c A exp(——.,.,)
2,0 L+ 17

(4,7)#( 47
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47 l,-_fl-r . .
where \.7 = A,7 and ¢ = e(8) is a constant independent of n,u, f
(%] 1l

and g, and we denote ®(u) = [*_ —ﬁ exp(—y?/2)dy.

Estimating the upper bound for the second term of the right hand
side of (2.3), we have the following lemma, whose proof can be found in

[3].

LEMMA 2.5. Let {€;;},5, f,g and A}] be as in Lemma 2.4. Assume
that -,
N | < (i=dlli—-5D7" iE #S

and set u = /(2 — n) log(fyg), where v and n are positive constants such
that 0 <7 < (1 -8/ (1 4+ v +8). Then we have

" N7k LA PP
Z T Z | ij |€‘XP(—W) <c(fg™,

(G,5)7(@57)

where 8o = {v(1 —8) —n(1+ 6+ )}/ {1 +v)(1+8)} >0, andcis a
positive constant independent of n, f, and g.

In the sequel, ¢ and ¢;(i = 1,2, -+ ) denote positive constants, whose
values are irrelevant.

Proof of Theorem 1.1. Without loss of generality, assume that 0 <
br < Br < 1. For positive integers k, j,I and r, let

Akjlr = {T: gkil < Ar < 9'“, g1 <ar < Bj:
0 <Br <8l 0T <br <@ "}

for any fixed § > 1. We always consider such %, 7,! and r that Ag;, is
non-empty. By condition (ii), we have

(2.4) 67" < ¢y and equivalently, j—r < cs.
The condition (iv) and {2.4) imply that for any B > 0

(2.5) gr—IHaT > o(kl)POTH,
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provided k is large enough. Moreover,

k—1—2 1/2
T log 81| log B_ll) }

> 6-2{2log (0¥~ log #*| log 6~11) }/*
=: 072 Brr

v, o2 {21on(*

(2.6)

for all large k. And, by Lemma 2.1, for any 0 < e < 1/2,

Cinf S%(t) > (2—e)o(9 ")
9 1<t
(2.7) T I<ucoT

> (1 —e)o?(077) > (1 2¢)5%(87,677),

provided j and r are large enough. By conditions (i)~(iii), Ar and ar
are unbounded while Bt and by are bounded. Without loss of generality,
assume ar > 1. Wehave 1 < j<k+1and —r < —-1+1 < 1. Using
(2.6) and (2.7), we can write

(2.8)
limsup D*{ar, br)
T—o0
< lim sup sup sup sup  sup

k—oo 1<j<k+1  TChkjir 0<s<Ar 0<t<ar
i—oo >I=1,j—r<c3

wp sup K(EGHw)
0<u<Bro<v<hr Slar,br)fr
< limsup sup sup sup

k— o0 1<j<k+1 0<s<fk 0<t<HI
=00 rrl—1,j-r<cs

sup sup |X(R(s,t,u,v))|92
0<u<fd—t o<yl (1 - 2E)S(G‘j: 8_r)ﬁklr .

Let Cijir = {(s,t,u4,0) : 0< s <0<t <#,0<u<h0<v<
8~} be a four-dimensional set. In order to apply Lemma 2.2, we put

X{R(s, t,u,v
Yir(s,t,u,v) = %39_:)1

_ 40’(\/§Z)
~ 59,0 )

) (Sstau:v) € ijl'r;

z > 0.

¢(z)
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Clearly,
EYjr(s,t,u,v) =0, T?:=  sup  E{Y;.(s,t,u,0)}" =1
(Sataus'v)e‘ckjt'"
and further

E{X(R(s1,t1,u1,v1)) — X(R(s2,ta,us,vs))}
< 2E{([X(s1 +t1,u1 + v1) — X (82 + to, up + v3)]

— [X(s1,u1 +v1) — X(s2,u0 + v2)])?

+ ([X (82 + to, u2) — X(s1 + 1, u1)] — [X(s2,u2) — X (51, u1)])*}
< 4{02( (81 4+t — 82— 12)2 + (u1 + vy — ug — v2)?)

(\/ (81— 82)% + (u1 +v1 — ug — v2)?)

(\/ {81+t — sz —t2)% + (uy — U2)2)
o*(
(

V(51— 82)2 + (11 —ug)?) }
< 160’ \/_‘\/(81 — 32 2 + (tl - tg) + (u1 — ’U.2)2 + (’U]_ — ?.)2)2 )

Thus we obtain

E{Y}r(slatlyu13vl) — Y:,,-,-(Sz,tg,UZ,’Uz)}z
le?(V/(s1 - $2)2 + (t1 — t2)? + (U1 — ug)? + (1 — 12)2).

For any yo > 0 and 0 < & < 1, write

% e Yo o0y g(24/2607T27Y)
259’”29d=4/+/ i . dy.
fo o( ) dy ( ; . ) (@677 Y

By the regularity of o and Lemma 2.1, we have

0(2\/_59 ro=v’) * 5(2v/20-727Y)
/yu swa <[ T
— L9v 05(2\/59—4"273;2) . ( T)
_/yo (2v2-2 ¥ S5 5 W

<é
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for any given e; > 0, provided yo,j and r are large enough. Moreover,
for the fixed g, taking § > 0 to be small enough, we have

/yo o(2v/260-727V")
0 S(Gj:g_r)

Yo 2
:/ (2v/26-279 ).
0
£1.

dy

12v260-727Y")  o(07T)
ey s

IA

Then, putting ¢ = 64(v/2 + 1)Ae;, where A is defined in Lemma 2.2,
we obtain

2(vV2 +1)A / @(2007 727" ) dy < 58'

For any given ¢ > 0, take 0 < £’ < 2¢. Then it follows from Lemma 2.2,
(2.4) and (2.5) that

P X (R(s,t,,0))

oo t
0

sup sup  sup sup i+ E}

0<s<Bk 0<t<0) 0<u<d—t 0<v<o- S(07,077)Brir

§2P{ sup sup  sup sup Yj-(s,t,u,v)
0<s<O* 0<t<HT 0<u<h—! 0<u<h—T

> Mﬁur(l-‘-%)}

SZP{ sup Sup  sup sup Yjr(s,t,u,v)
0<s<A* 0<t<Bd 0<u<sL0LvLh— "

> V1+eBur [1 +2(vV2+1)A fﬁ"" (260 727 dy] }

= C(agﬁ) (&gi) (5%_—Ir) % exP{_%ﬁi“}

< cgj—re—s(kfl-l-tlr)(kl)—l—s < cﬁ_e(r+j)(kl)_1_s_53,

which implies that the sum

0 oo kil oo | X(R(s,t,u,v))|

ZZZ Z P{ sup sup  sup sup (07, 6-")Brer

k=0 1=0 jo1rel.1 0Ss<* 0St<i d<ugf=! 0<v<O—"

21+£}

is convergent. Then the Borel-Cantelli lemma and (2.8) yield (1.4) by
the arbitrariness of # and ¢. O
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Proof of Theorem 1.2. Similarly to (2.8), write

liminf D(ap,br)
T—o0

7 -r

koo 1<j<k+l k—1 _i-1 S(81,8-m)0
o oiS{5ETL, 0<e<oet 0<use (67, )0Bkir

(2.9) — lim sup sup sup sup

k—o00 1<i<k+1  0<s<0* 0<<HI-1(6--1)
l~00 r>l-1j—r<es

sup sup | X(R(s,t,u,v))|6?
0<u<o—t 0<v<d-r—1(9—1) (1 —2€)S(09,677)Bxsr
= J1 - J2.

Imitating the proof of Theorem 1.1 and comparing the ranges of £, v in
the right hand sides of {2.8) and J, we have, for any £ > 0,

(2.10) Jy<e a.8.

provided € is one near enough. Consider J;. The condition (iv) implies
that for any B > 0 there exists ¢ > 0 such that

(2.11) GE—IHT 5 (k)P

for all large k. For such given k,[,r and integer j > 1, we define positive
integers fr; and g by

—i—14r
N

akulfj

fkj=[ Vl] and g;,,:[ Vl],

where N > 0 is a large number specified later on and [-| denotes the
integer part. Moreover, (2.11), (2.4) and condition (vi} together imply
that for any 7 > 2

(2.12) Biir < T1og(frigir),

provided k is large enough. For p = 0,1,--- , fy; and ¢ = 0, 1,--- , girr,
we also deﬁne incremental random variables

X(RIJQ’) = X(R(Npgjs 931 qu_rg 9_7‘))'
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It follows from (2.12) that, for any 0 < ¢’ < ¢ <1,

X(R(S,Qj,u,e_r))
P su su . <V1l—¢
{ogsg(la)k—l oguggp—H S(67,077)Bkir }

X(R(s,07,u,077))
<PJ sup sup .
{03336‘““1 0<u<g—1-1 S(67,8°7)

< {201 - &) log(fizoun)}/2 |

X(qu)
< —_—
mP{USngg‘}]%kj Ug;%};zr S(67,6-7)

< {2(1 - &) log(fus)}/ },

provided k is large enough. Define the correlation function of X (R,q)
and X(Rpiqf):
’\(pa Qap’: q,) = COI‘I‘(X(prq), X(Rp'q'))) p '_lé P’: q 7& q’:

and let h = p—p',m = g—¢. By the relation ab = 1(a®+b% — (a —b)?),
we obtain

(2.13)

|Cov(X (Ryq), X(Bprg))]

< {o? (V(NROIY + (Nmb=" +6-7)%)
—a?(V/(Nh#9)2 + (Nmf—7)?)}
— {o?(/(NhOI)2 + (Nmb~")?)
— a2 (\/(NhO7)? + (Nmb-" — §-7)2) }|

+ %|{a2(\/(Nh6’j — 832 4 (Nm8—" +6-7)2)

— o (\(NRET =~ 077+ (Nmb ) )
—{o?(v/(Nh§i — 69)2 + (Nm@=")?)
— a2(\/(NhI — 95)2 + (Nmf-" — 8- 7)2) }|

+ %Haz(\/(Nth F 09+ (Nmf ™ +6-7))
~o?(V/(Nh87 +89)2 + (Nmb-—")? ) }
—{o®(v/(Nh8i + 67)2 + (Nmf~7)?)

— o (\/(NROI +89)2 + (Nmf=" — 0-7)2 ) }{
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V(NROI)Z+(Nmb—T+0-7)2
= ‘/ do?(x)

V(NREI)2+(Nmb—r)2
 (NRE7)Z+(Nmb—T)2
]\/(Nhez‘)u(zvme—me—r)z
1\/-\/(Nhﬂi—63')2+(Nm0—"+9—')2

do®(z)

+ = do?(x)

2

/(Nh8i—8i)2+(Nmé—r)2

do?(z)

/\/(Nhei—ei)2+(Nm9—r)2

V(NhEI—8i )2+ (Nmf-"—8~7)2

do®(z)

2|/ (NROT 07 E 4 (Nmo—")2
/\/(Nh63‘+91)2+(Nm9"")2

1’f\/(Nh93'+91)2+(Nm6""+6—'")2

do?(z)

V(Nh6T+87)2+(Nmo—T—6—T)2

Without loss of generality, assume that 2 > 0 and m > 0. Applying
Lemma 2.3 for a = Nh#/, Nhé? — 87 and Nh#7 + 87, respectively, we
obtain

|Cov(X (Rpq), X (Bprgr))]

o (/(NhO7 + 09)2 + (Nmb " +6-7)%)
=T (NROT — 03)2 + (Nmb—" — 02

6,

It follows from the regularity of o, (2.1) and (2.2) that, for some large
N and all large %k,

|A(p, 4,9, d')|
o2(\/(NhOI + 07)2 + (NmO—7 + 6-7)2 )4~ 2"
= CT(NhT —G5)2 1 (NmB-" — 6-)2)52(04,6-")
{(Nh + 1)292j + (Nm 4 1)29—2r}a
= “I(Nh — 1)%6% + (Nm — 1)26-27}
U/ VR + 1207 + (Nm + 1207 )22
I(G—T)ZQ—QCU‘
< (B2 +m?) @D/ < (2hm) @2 < (hm)~,
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where v = (1 — «)/2 > 0. In order to estimate an upper bound for the
right hand side of (2.13), let us now apply Lemnmas 2.4 and 2.5 for

fszj: g = gir,
glplq =X(qu)/s(9j:9_r)a p:O,l, 1fkj; q=0715 y Qiry

M| = |A(p, 0,7, q)| < (Ihm)™, h=p—p #0, m=q—q #0,
(1-9d)w

w =gty = {2 ) log(feggn)}?, n=2' < 1=

Then the right hand side of (2.13) is less than or equal to

{(I)(ukﬂr)}(fkj +1(gir+1) | C(fkjglr)_50

for some dy > 0 and large k. Thus we have, from (2.13), condition (vi)
and (2.11),

P{ sup sup X(R(s.,Hj,u,B_’")) <V1- E}

0<s<ok-1 o<u<o-t-+  S(09,077) B
(2.14) < exp{~c((fi; + D{gr + 1)) } + c(frjar) ™%
<c(frjgir) %0 < cfOotk—lmit)
Sceéﬁo(k—l-l'%")/? S C(kl)—ags/zg—éor .

Taking B > 4/6y, we have

o
D (k1) %0B2p70 < oo,

Hence, by (2.14) and the Borel-Cantelli lemma, we obtain

(2.15) J>V1l—¢ a.s.
Combining (2.9), (2.10) with (2.15} yields (1.5). O
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