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ABSTRACT. To predict the fate of groundwater contaminants, ac-
curate spatially continuous information is needed. Because most
field sampling of groundwater contaminants are not conducted spa-
tially continuous manner, a special estimation technique is required
to interpolate/extrapolate concentration distributions at unmea-
sured locations. A practical three-dimensional estimation method
for in situ groundwater contaminant concentrations is introduced.,
It consists of two general steps: estimation of macroscopic transport
process and kriging. Using field data and nonlinear optimization
techniques, the macroscopic behavior of the contaminant plume is
estimated. A spatial distribution of residuals is obtained by sub-
tracting the macroscopic transport portion from field data, then
kriging is applied to estimate residuals at unsampled locations.
To reduce outlier effects on obtaining correlations between resid-
ual data which are needed for determining variogram models, the
R p-estimator is introduced. The proposed estimation method is
applied to a field data set.

Received February 24, 2000.

2000 Mathematics Subject Classification: 86A32, 65U05.

Key words and phrases: groundwater contaminants, geostatistics, R p-estimator,
kriging.

*The paper has not been subject to USAF review, however, and accordingly does
not necessarily reflect the reviews of the USAF. A part of this work was presented
at the Conference on Control of Distributed Parameter and Stochastic Systems,
Hangzhou, China, June 19-22, 1998. **The research of this author was supported by
Korea Research Foundation Grant (KRF-99-041-D00075).



524 Richard Ewing, Sungkwon Kang, Jeongook Kim, and Thomas B. Stauffer

1. Introduction

Groundwater contamination is an important environmental issue. Re-
searchers have conducted extensive field experiments to analyze geo-
physical, chemical and biological processes that control the fate and
movement of groundwater contaminants (see, [12, 17, 23, 25, 26] for the
Borden test site, Canada, [13, 15| for the Cape Cod site, Massachussetts,
and [1, 4-6, 16, 22| for the Columbus site, Mississippi).

In order to describe and predict underlying physical, chemical and
biological processes affecting chemical fate and transport, accurate spa-
tially continuous information is needed. Because most field sampling of
groundwater contaminants are not conducted spatially continuous man-
ner, a special estimation technique is required to interpolate/extrapolate
contaminant concentration distributions at unmeasured locations. These
interpolations/extrapolations are complicated by uncertainties often as-
sociated with an unknown distribution of contaminant fluxes in space
and time reflected in a complex velocity field within a heterogeneous
aquifer.

Many geostatistical techniques have been developed for estimating
geophysical/chemical parameters and groundwater contaminant concen-
trations (see, for example, [2, 7, 19, 27, 28] and references there in}.
But, application of these estimation methods to groundwater contamni-
nant data often fail to obtain satisfactory results because methods are
based on the geostatistical intrinsic assumption [14], and because field
data behave irratically or contain “outliers.” The geostatistical intrin-
sic hypothesis (or stationary assumption) is that spatial correlationship
between data points depend only on the separation vector (modulus
and direction) and not on the individual sample location. But, the
global behavior of contaminant plume follows dynamical process gov-
erned by groundwater flow; consequently, the concentration of contam-
inant strongly depends on sample location. Questions concerning the
locations or regions of high pollutant concentrations and contaminant
plume dimensions are key issues in environmental concerns. The first
obstacle, the intrinsic geostatistical hypothesis, can be overcome by ex-
tracting the plume macroscopic behavior from the field data. The macro-
scopic behavior is a large scale behavior of the plume and estimated by
approximating the solution of the contaminant transport equation. The
concept of macroscopic plume behavior is essentially similar to that of
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drift or trend in geostatistics in the sense of nonstationarity. In geo-
statistics, the general profile of most regionalized variables is assumed
to be stationary, and, hence, the slowly varying minor nonstationary
components (drift or trend) observed in the field may be approximated
by lower order polynomials. The greater portion of a goundwater con-
taminant plume exhibits nonstationary characteristics. Thus, a major
component of the plume can be estimated from dynamical processes ex-
pressed in the governing transport equations. This macroscopic plume
behavior can be measured in a large region. On the other hand, the drift
should be estimated in a “small neighborhood” of the point where krig-
ing to be performed. Additional problems arise when concentrations are
estimated at locations where measurements are not available. For exam-
ple, conventional semivariogram is too sensitive to obtain correct spatial
correlations for data exhibiting a wide variance. These correlations are
needed for determining variogram models in a kriging procedure. The
log transformation commonly used to compress data variance contains a
logical conflict between original data structure and application of kriging
algorithm. Consequently, to make spatial interpolations of data exhibit-
ing a large variance, there is a need to develop a new robust estimator.
This paper introduces the R-estimator. It is consistent and robust.
These properties are taken from combining theoretical concepts that de-
fine the norm of Banach space L?, 0 < p < 1, [24] and the semivariogram
in geostatistics. To obtain correlation between data points, geometric
anisotropies such as symmetry and ratio between the three-dimensional
coordinate system are also considered. The symmetry is inherent from
the groundwater contaminant distribution while the ratio evolves from
the geological structure of the aquifer material.

The general procedure of the estimation method is following: (1)
Divide the field site into several subregions based on all available infor-
mation. (2) In each subregion, macroscopic plume behaviors (or deter-
ministic transport components) are estimated from the field data. These
estimated values are subtracted from the field data to obtain residuals.
(3) Based on complexities of spatial distribution of the residuals, divide
each subregion into several small blocks. (4) In each block, calculate
experimental variograms using the robust Rp-estimator and determine
mathematical variogram models. (5) Perform kriging to estimate resid-
ual at each desired location. (6) Finally, combine kriged residual values
with the estimated macroscopic transport components.
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The purposes of this paper are following: first, to provide a systematic
methodology for estimating in situ groundwater contaminant concentra-
tions, second, to introduce the R,-estimator for producing correlations
between data points characterized by large variance, and, third, to gen-
erate a “complete” data base on a uniform grid. This method can be
used generally to estimate space and time dependent geophysical, chem-
ical and biological parameters; thus it may be useful to those developing
numerical models for capturing the main feature of the groundwater
contaminant distributions.

In Section 2, basic principles for estimating macroscopic plume ba-
havior are explained. A robust estimator is introduced in Section 3, and
anisotropies such as symmetry, ratio and mathematical variogram mod-
els are discussed in Section 4. The punctual kriging method is explained
in Section 5, and our proposed estimation method is applied to a field
data set in Section 6.

2. Estimation of macroscopic plume behavior

2.1. Regionalization

As the first step for estimating the global plume behavior represented
in the field data, the field site is divided into several subregions. The
size of each subregion strongly depends on the geological structure of the
field site and the global characteristics of data distributions. Each region
showing distinctive distribution behavior is contained in a separated
subregion. All available field data are visualized and analyzed. Also,
any information related to the field site such as geological aquifer history
are incorporated.

2.2. Estimation of macroscopic plume behavior

The distribution of groundwater contaminant concentrations may be
approximately by a solution of the transport equation describing many
complex processes. Each sampling set represents a single realization of
such complex physical, chemical and biological activities. Spatial and
temporal distribution of reactive and nonreactive tracers could be used
to indirectly assess aquifer geophysical characteristics and groundwater
transport processes. Nonreactive tracers (i.e., those which are nonsorb-
ing and conservative) are particularly useful for characterizing disper-
sion and advection because they are not retained and as such provide
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transport related information over larger aquifer scales than reactive
tracers. In this step a macroscopic behavior of the plume is estimated
from field data. This is essentially a similar process as detrending the
data. The macroscopic behavior is a spatially continuous large scale
behavior describing the main profile of the plume movement. This step
is difficult because the parameters in the transport equations, such as,
dispersion/diffusion and seepage velocity share a highly nonlinear inter-
dependence in space and time. Also, the measured contaminant con-
centration themselves add uncertainties due to spatial variabilities and
unequal analytical confidence intervals, i.e., higher confidence in larger
concentration and less confidence at near background levels. In this
step the criteria on how to choose basis functions and some specific
approximation functions to estimate the macroscopic plume behavior
are provided. These approximating functions are chosen based on the
global behavior of the solute transport process in porous media. Since
nonlinear optimization techniques are needed for estirnating parameters
appeared in the approximating functions, general principles for select-
ing the initial parameters are given. These principles prevent the failure
of the convergence of data fitting iteration process and also reduce the
computing time considerably.

2.2.1. Approximating functions

Several types of basis functions are examined for approximation of the
dynamic processes represented in the field data. For example, Gaussian
features often observed in contaminant plumes can be approximated by
linear combinations of exponential functions, which is a characteristic
feature of solutions to parabolic partial differential equations. Using se-
lected hasis functions, the macroscopic plume behavior in each subregion
is estimated from the field data. Basis functions are chosen using the
following general criteria:

(1) “Simple” functions are preferred because they are easily evalu-
ated. At the same time, a “low order” approximation should capture
the main profile of the plume movement. Here, the order of the approx-
imation refers to the number of basis functions needed for the approx-
imation. After the primary features of the plume have been described,
the residuals, derived from subtracting the macroscopic behavior from
the field data, are calculated to obtain a new stationary random field;
this new randem field lends itself to existing geostatistical analysis tech-
niques or newer more robust estimation procedures which then estimate
residuals at unsampled locations. Ideally an entire plume can be cre-
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ated over an entire site by adding the macroscopic transport portion to
estimated residuals. Use of higher order approximation for the plume
macroscopic behavior is undesirable, because the estimation procedure
tries to fit the given data based on a least squares fit, so, eventually, at
higher orders the fit narrows to a point by point basis. This means that
as the number of basis functions increases the approximating function
tries to capture the complex plume behavior caused by the geological
heterogeneity and measurement artifacts instead of capturing the global
behavior of the plume. Often in practice, unexpected or unwanted irreg-
ularities appear when high order polynomials or sinusoidal functions are
used for basis functions. Major contributors to this irregularity are the
field heterogeneity, the uneveness of sampling network, and the depen-
dence of approximation or fitting algorithms on the intrinsic properties
(such as frequencies in sinusoidal functions) of the selected basis func-
tions. Therefore, to select basis functions for estimating the macroscopic
plume behavior, both data fitting and global data trends must be con-
sidered.

(2) The approximation functions must capture the global plume be-
havior outside sampling network. In many practical applications, sam-
pling networks often don’t cover the entire extent of the contaminant
plume; however, extrapolation of plume movement outside the sampling
network is often desired.

(3) Basis functions should be “robust” in the sense that they are not
very sensitive to unevenly spaced data points.

According to the selection criteria described above, specific basis func-
tions are chosen based on the available field data and the process to
be described (e.g., transport of a tracer or the spatial distribution of
aquifer permeability). Focusing on the problem at hand, advective, dis-
persive/diffusive solute transport in porous media depends on space,
time, and solute concentration. If, in addition, recharge, chemical, bi-
ological, and other reactive processes are considered, then the solute
transport may be approximated [11], in Cartesian coordinates, using

(2.1) %=V-(D-V’C‘)—V-(VC’)+Jf

with appropriate initial and boundary conditions, where C(z,y, z;t) is
the concentration of the solute, i.e., the mass of solute per unit volume
of fluid, D = D(z,y, 2;t; C) is the dispersion tensor, V = V{z,y, z;1;C)
is the pore water velocity vector, f = f(z,y, 2;t;C) is a “forcing func-
tion” related to recharge, chemical, and biological activities. Note that
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the coefficients D and V depend on space, time and concentration itself.
Even though equation (2.1) is a nolinear partial differential equation,
the solution, whenever it exists, can be approximated by dispersion and
propagation processes. Chemical and biological activities can affect ad-
vection/dispersion and complicate the transport description; neverthe-
less, these dispersion/diffusion and propagation processes are inherent
properties of the evolution system governed by a parabolic partial dif-
ferential equation [20].

As a simple case, assume that the porous medium is homogeneous,
isotropic, saturated, the flow is steady-state, and that there is no exter-
nal source. Then the transport equation (2.1) can be simplified as
(2.2)

oC 8*C »P?C 326’] [ ocC oc _ oC
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where D,, D, and D, are dispersion coefficients in the z, ¥ and z-
directions, 9, U, and 7, are the average linear pore water velocities in
each coordinate direction defined by o, = v, /¢, v, = v, /@, T, = v, /@,
in which v, v, and v, are specific discharge components, and ¢ is the
porosity of the medium.

If a contaminant is released instantaneously at the origin (z,y,2) =
(0,0,0), the mass distribution of the contaminant at time ¢ is given by

(2.3)
Clz,y,2t) =
M oo [ — (x—0t)? (-9t (2-17.:t)?
8(nt)3/2¢,/D.D,D, * 4Dt Dt Dt )’

where M is the mass of contaminant introduced at the point source
[11]. The averaged pore water velocities ¥, ¥, and %, contribute move-
ment of the center of mass of the contaminant plume {the propagation
process). D, D,, and D, contribute to the longitudinal and trans-
verse spreading of the plume around the plume centroid (the disper-
sion /diffusion process). The solution (2.3) of the ideal equation (2.2) is
a simple representation of these two processes throughout two parameter
sets V = (0;,7,,7,) and D = (D, Dy, D).

To approximate the gross distribution of contaminant concentrations
in space, we propose the following linear combination of exponential



530 Richard Ewing, Sungkwen Kang, Jeongook Kim, and Thomas B. Stauffer

functions.

F(z,y,za,b,¢)

(2.4) _m z—a? 2 y—al 2 z—a?\’
=2 e ‘( 0 )_( b7 ) ‘( bz ) ’

where m is the number of basis functions, of, af, af, b7, b, b7, and ¢;,
1 <1 € m, are parameters to be determined.

In the same context as transport equations (2.1) and (2.2), the pa-
rameter set a = {{(a¥,al,a?) : 1 < i < m} represents the propagation
-or advection process, the set b = { (b7,b07,b7) : 1 < i < m} represents

TPy

the dispersion/diffusion process, and the set ¢ = {¢; : 1 <4 < m} is
related to the magnitude of the source load.

2.2.2. Initial parameters

Using equation (2.4) to describe the macroscopic plume behavior will
require use of a nonlinear optimization technique to estimate parameter
sets a, b and c¢. The Levenberg-Marquart method (see, for example,
[18,21]) is commonly used for estimating the parameters. This method
is slow, but not sensitive to complex data distribution such as field data.
For other nonlinear optimization techniques such as the conjugated gra-
dient method, the quasi-Newton method, or the hybrid methods, see [3,
9, 19].

Most nonlinear or linear optimization algorithms for parameter esti-
mation depend strongly on the initial input parameters, because perfor-
mance indices {or cost functions) are, in general, nonlinear in parameter
variables, and may have many local minima. Thus, it is important to
select initial parameters which are close to the global minimum. The ac-
curacy and efliciency of numerical approximation depend on the choice
of algorithm, basis functions, initial parameters, and, of course, comput-
ing machines used. The following basic principles on how to select the
initial parameters for a given nonlinear optimization algorithm can be
considered.

(1) Choose the initial parameters so that the first basis function cap-
tures the main dominated profile, the second basis function covers the
second dominated part, and so on. This principle reduces the number of
basis functions as well as the computational time for the approximation
with the given desired accuracy.
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(2) Provide o priori information observed from the data distribution
to the nonlinear optimization algorithm through the initial input data.
This principle prevents the failure of the convergence of data fitting
iteration process (optimization process) and also reduces the processing
time considerably.

3. Rp-estimator

The residuals are obtained by subtracting the macroscopic transport
portion from field data. The experimental semivariogram or variogram
is used to describe the pattern of spatial correlation displayed by the
residuals. A mathematical model is fitted to this experimental vari-
ogram, and this model is used in kriging to estimate the residuals at
unmeasured locations. In this section, a robust estimator is introduced.
This estimator is designed for producing the spatial correlation {exper-
imental variogram) displayed by the data which contains large random
components and outliers. Thus, this estimator can be applied directly
to other parameters such as hydraulic conductivities and soil sorption
coefficients which often showing erratic behavior.

Due to physical and chemical heterogeneities and other uncertain-
tities, most field data reflects a large random component. The con-
ventional semivariogram is too sensitive to obtain correct spatial cor-
relations for data exhibiting a wide variance. The log transformation
commonly used to compress data variance contains a logical conflict be-
tween original data structure and application of kriging algerithm as
described in Section 5. Consequently, to make spatial interpolations of
data showing a large variance, there is a need to develop a systematic
robust estimator. This paper introduces the “Ry-estimator,” where R
stands for “robust” and p > 0 indicates the order of robustness. For
0 < p < 1, the estimator is robust; whereas for p > 1 the estimator
becomes sensitive to apparent outliers. The estimator satisfies the fol-
lowing properties:

(1) The estimator is consistent such that spatial correlations among
the original data are preserved under linear transformation. Thus, the
original data structure, estimation of correlations, and kriging proce-
dures are consistent.

(2) The estimator is robust. It reduces outlier effects on estimated
correlations between data points.
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{3) The estimator is systematic. Depending on the distribution of the
data, the order p of robustness can be adjusted systematically.

Let Z(x) be a regionalized function on a domain €2 in three dimien-
sional space, and Z(x;) be the realization of the function Z(x) at x; =
(5,46, 2:) €Q, 4= 1,2,--+ ,n. Let p > 0 be a positive real number. For
any vector h = (hy, by, h;), we define the R, -estimator as

n(h) P
(31) Rp(h) = Z |Z xz - xz + h)lp b

where n(h) is the number of data pairs separated by the vector h.

For any positive integer k, and for any positive real number p > 0,
the following inequalities hold:

af+ay+--Fap <(amtoet+ - +ar), p>1,

3.2
(3.2) d+ai+--+al >{ata+ - +a), 0<p<l,
where a; > 0,1=1,2,--- , k. Thus, the function
PP P
(33) (al,ag,--- ,ak) — al +a2 + +ak

k

is a convex function for p > 1 and a concave function for 0 < p < 1,
where the symbol — represents the mapping of an element of R* to the
right hand side of equation (3.3) and R” is the k-dimensional Euclidean
vector space. As p > 0 approaches 0, robust effects are increased and
the estimator R, defined by equation (3.1) reduces effects of outliers for
O<p<1.

Moreover, it is easy to see that, for any positive constant ¢ > 0,

=

n(h)
Z leZ({x;) — cZ(x; +h)|”

(3.4)

3

n(h)

Z|z x;)— Z(x; +h)P|
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and, hence, the estimator R,, preserves any scaling factor in the original
data. Therefore, if the original data set has a large range of values,
then the range can be scaled by multiplying by a fixed positive constant
without destroying the correlation structure found within the original
data. The Cressie-Hawkins robust estimator [8]

[Wlhj ZL(};) |Z(x;) — Z(x; + h)J%r
[0.457 4 0.494/n(h)]

35) )=

which is commonly used in practice, the squared median of the absolute
deviations estimator [10)

(36)  Yomaa(h) = 2.198 x [median |Z(x;) — Z(x; + h)|]?,

and the conventional semivariogram [14]

n(h)

(3.1 1(B) = s > 12(%) - Zxs 4 )

are essentially similar to the R -estimator with p = 1/2, p = 1, and
p = 2, respectively. However, the semivariogram ~ is not robust. The
influence of outliers on the semivariogram ~ increases by the square
|Z(x) — Z(x + h)|* as the difference |Z(x) — Z(x + h)| increases. The
Cressie-Hawkins estimator 4., and the squared median of the absolute
deviations estimator vVemaq are not robust enough so that they do not
produce correct correlation between data points showing erratic behav-
iors which are commonly observed in field data. Moreover, they do not
preserve scaling factors and are not systematic.

4. Symmetry, ratio and variogram models

Symmetry is one of typical characteristics of groundwater contammi-
nant distributions. Since the contaminant follows the groundwater flow
path, for example, in y-direction, its distribution has certain symmet-
ric behaviors along the transverse directions, z- and z-directions, due
to dispersion and diffusion processes. Primary transport processes are
exhibited the spatial distributions of groundwater plume constituents.
These primary processes can be estimated deterministically and then
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extracted from field data as described in Section 2. The residuals sub-
sequently obtained still produce a symmetric distribution.

Dispersion/diffusion ratio between different directions are often ob-
served. This ratio is incorporated with the geological structure of the
aquifer material and shows similarity along the same aquifer. To es-
timate this ratio, choose a data range which can represent the main
dispersion/diffusion profile of the data distribution in the region con-
sidered. The distance covered by the selected data range is measured
in each direction. The ratio is obtained by comparing these distances.
If the ratio is, for example, z : ¥ : z = 2 : 4 : 1 in meter scale, any
two points separated approximately 2m distance in 2-direction, 4m dis-
tance in y-direction, and 1m in z-direction are considered to have the
same correlation in the average sense. Symimneiry and ratio are geomet-
ric anisotropies [14] resulted from the interaction between contaminant,
groundwater flow, and aquifer materials.

The next step is to fit the experimental variogram by a mathematical
model. The spherical model

0 3h WP p<
(41) ’Y(h) = 0+ ﬁ (203 2oy ) ? = a,
c+ 8, h > a,

and the exponential model
h
(42) ) =0+ (1- exn(-2)).

are commonly used, where h = |h| is the radius of the vector h, and
the parameters c0, the nugget effect, c0 + 3, the sill value, and «, the
distance h at which variogram reaches siil value, are to be determined
by fitting a model to the experimental variogram. Other models such as
linear or logarithmmic models can be found in [14].

5. Kriging

Kriging is to estimate the variables at unmeasured locations. It
uses the mathematical model variograms fit to experimental variograms.
Many kriging methods are available. Among them, the universal kriging
and the punctual kriging are simple and can be easily implemented. In
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this section, the punctual kriging is explained when the experimental
variograms are obtained by the R,-estimator. The application of the
estimator to the universal kriging can be done in a similar way. The
preservation of scaling factors and the consistency of the estimator are
explained. Logical conflict of using the log transformation to compress
data variance is also explained.

For each ¢, ¢ = 1,2,--- ;m, let Z(x;) be a given value at location
x; = (2,9, %) that is selected for kriging. For a given location x, =
(Z0,Y0, 20), assume that the value Z(x,} at X, can be approximated by

a linear sum of known values Z(x;),1=1,--- ,m. Let
T
(5.1) Z(xo) = Y wiZ(x:),
i=1
where w; > 0,i=1,--- ,m, are weights to be determined by the follow-

ing kriging system:

> wiRplhiy) + A =Ry(hio), 1<i<m,

i=1
(5.2 .
i=1

where R, (hi;) is the correlation value estimated by the R -estimator at
lag h;;, the subscript p is the order of robustness, h;; is the “correlation
lag” between two points x; and x;, A is the Lagrange multiplier, and
21w = 1 is the optimality condition. Here, by the correlation lag,
we mean the distance between two points in which the symmetry and
ratio described in Section 4 are accounted. If the semivariogram ~y(h)
(see, equation (3.7)) is used for variogram estimation, then R,(h;;) is
raplaced by v(h;;) in the kriging equations (5.2). Note that this krig-
ing system (5.2} is “optimal” in the sense that the method produces
the exact (original) value at the sampled location. However, the krig-
ing system is optimal only inside the sampling network (convex) do-
main. Thus, the estimation procedure for points outside the sampling
domain must consider macroscopic properties such as trend, drift, etc.,
of the original data structure together with the kriging system because
the optimality condition in equation (5.2) is no longer valid outside the
(convex) domain, as long as the approximation (5.1) is a linear combina-
tion of sample values. This optimality constraint described above comes
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from linear optimization theory and, hence, is independent of the choice
of variogram; Rp-estimator, semivariogram v in equation (3.7), or any
other estimators.

With regard to the scaling factor, recall that, from Section 3 (see,
equation (3.4)}), for each p > 0,

(5.3) Rp(ch) = ¢Ry(h)

for any ¢ > 0 and lag h. Thus, the scaling factor ¢ > 0 of the original
data set is preserved in the correlation estimation step. Moreover, for
any constant ¢ > 0, the following two kriging systems:

Y wileRp(hig)) + A = cRylhio), 1<i<m,

(5.4) =t _
Zwi =1,
i=1
and
ijRP(h’ij)_*')\/c:RP(hiO)! 1 S(L < m,
(5.5) = .
Zwi =1
i=1

are equivalent. That is, if the system (5.4) has a unique solution w;, ¢ =
1,2,--- ,m, and A, then the solution of the other system (5.5) is w;, i =
1,2,---,m, and A/c, and conversely. In order words, the weights w;, ¢ =
1,---,m, determined by kriging system (5.4) or (5.5) are independent of
the scaling factor ¢ > 0. The only change is on the Lagrange multiplier
A which is needed for estimating the kriging variance. This property
derived from equations (5.3)-(5.5) shows that the estimation procedure
is consistent in the respect that preserves the scaling factor.

The kriging system (5.2) can be written in the following matrix form:

(5.6) Aw =b,
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where
Rp(h11) Rp(hiz) - Rplhim) 1 Ryp(h1o)
Rp(har)  Rplhaz) -+ Rplham) 1 Rp(h2o)
A=| I S
Rp(hm1) Rplhmz) -+ Rplhmm) 1 Rp(hmo)
1 1 e 1 0 1
andw=[w, w2 ... wp /\]T.

In order for the system (5.6) to have a unique solution w, the matrix A
must be regular, i.e., invertible. Data scaling is needed, especially, when
a given data set ranges too widely. Symmetry may cause singularity of
the kriging matrix A. If two samples, say, Z(x;) and Z(x;), that are
selected for kriging happen to be located at exactly symimetric positions,
the corresponding two (i-th and j-th) rows in the kriging matrix A
become identical, and hence the matrix A becomes singular. Taking the
average of two samples and counting it as a single sample with double
weights, 2w, can prevent this singularity of the kriging matrix. In this
case, the size of the matrix A becomes m xm instead of (m+1) x (m+1).

We now discuss the reduction of the data set range by the log trans-
formation which is commonly done instead of using a scaling factor.
Assume that all elements in the data set { Z(x;) : ¢ =1,2,--- ,m} are
positive so that the log transformation is well-defined. The log transfor-
mation is a nonlinear transformation which causes the transformed data
set {log(Z(x;)) : ¢ = 1,2,--. ,m} to loose any given linear structure
that was in the untransformed data. Moreover, if a kriging method that
is based on linear approximation, Y i, w;log(Z(x;)), is used for finding
the “optimal weights” w; > 0, these w;s are nothing more than power
indices, i.e.,

(5.7 D wilog(Z(x)) =Y _log(Z(x:)*) = log (H Z(xz-)wi) ,
i=1 i=1

i=1

where the symbol || presents a product of all components on the right
hand side of J]. Therefore, when log transformed data are used, ob-
tained are the power indicies from the kriging algorithm rather than
the weights on Z(x;). In addition, if the log transformation is inverted
by an exponential function (with or without including the variance at
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each sampling position), a hidden assumption has been made: The value
Z(x,) at any unmeasured location X, can be approzimated by the prod-
uct of a certain power of each sample date Z(x;), which is obviously
suspicious. This occurs due to the logical error of using two different
functional actions, nonlinear and linear, independently during the esti-
mation prodecure. The log transformation is nonlinear and the kriging
procedure is based on linear theory. One possibile method for keeping
consistency of functional actions is to use nonlinear weights such as ex-
ponential weights in the kriging algorithm. But, this nonlinear weight
correction returns the transformed data structure back into the origi-
nal data structure. Therefore, any advantages gained by taking the log
transformation would disappear. It is important to maintain consis-
tency throughout the entire estimation procedure. Also, the correlation
between data must be obtained from the original data structure with-
out any destruction of correlation structure. The estimation method
in this paper maintains this structure and is consistent, and the R,-
estimator accounts for outliers effects coming from the randommness or
complexity of geological characteristics. In the estimation of groundwa-
ter contaminants, high concentration regions have more attention than
low concentration regions. But, by compressing the high concentration
data, major information will be disregarded and the kriging procedure
puts more focus on low concentration data. Therefore, changing data
distribution structure by nonlinear transformation to fit the statistical
assumptions which are hardly satisfied by the groundwater contaminant
field data needs a special caution.

6. Application

Site and experiment description

The MADE-2 site is located at Columbus Air Force Base in north-
eastern Mississippi (see Figure 1). The shallow unconfined aquifer which
immediately underlies the site consists of an alluvial terrace deposit av-
eraging approximately 11 m in thickness. The aquifer is composed of
poorly- to well-sorted sandy gravel and gravelly sand with variable silt
and clay content. Sediments are generally unconsolidated, and occur as
irregular horizontal or nearly horizontal lenses and layers. Marine sedi-
ments belonging to the Eutaw Formation and consisting of clays, silts,
and fine-grained sands form an aquitard beneath this alluvial aquifer.

An earlier macrodispersion experiment, referred to as MADE-1, in-
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volving bromide and three fluorobenzoate tracers, was conducted be-
tween October 1986 and June 1988 at the same site (see [1, 4, 6, 22).
More recently, a large-scale natural gradient tracer experiment(MADE-
2) was conducted to acquire detailed data on the transport of a conser-
vative tracer (tritium) and four reactive organic compounds (benzene,
naphthalene, !*C labeled p-xylene and o-dichlorobenzene). The goal of
this experiment was to develop through direct field observation a bet-
ter understanding of the physical, chemical, and biological processes
affecting transport of dissolved contaminants in aquifers. Also, this ex-
periment was to supplement the existing information produced from the
previous field experiment MADE-1. Hydrologic properties of the Colum-
bus aquifer and a more detailed deseription of the MADE site were given
in [6].

The MADE-2 experiment was started on June 26, 1990 with a two-day
pulse injection of 9.7 m? of tracer solution into the saturated zone ap-
proximately at (z,y,z) = (0,0,57.8). The y-axis is the assumed ground-
water flow direction and the z-axis crosses y-axis. The z-coordinate
indicates the elevation above mean sea level. During the injection pe-
riod, the maximum increase in hydraulic head in the nearby injection
point was 0.45 m. Tracer concentration distributions were subsequently
monitored at one to three month intervals over a period of 15 months in
three dimensions using an extensive network of saturated zone multilevel
samplers.

The extensive tritinum plume data (2267 samples) collected on May
21, 1991, 328 days after injection during the MADE-2 experiment were
used in this paper. After exiracting macroscopic plume transport por-
tion from the field data, geostatistical techniques and the R-estimator
are applied to the residuals. The use of linear geostatistics requires that
the regionalized variable be additive, i.e., that linear combinations of the
values of the variable have the same meaning [14]. In groundwater con-
taminant applications, this means that the contaminant concentrations
obtained from groundwater samples must be multiplied by the porosity
of the aquifer at the point where the sample was taken [7]. However, the
porosity of the MADE-2 site aquifer was not measured at every sam-
pled location. Instead, the porosity was determined by gravimetric and
volumetric analyses of 84 minimally disturbed soil cores. The mean and
standard deviation of the porosity measurements were 0.31 and 0.08,
respectively [6]. The constant value of 0.31 was assumed for the aquifer
porosity. Since the Rj-estimator preserves any data scaling factor, the
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tritium data concentration (as they are) were used in this paper instead
of using the multiplied data by 0.31.

Regionalization

Figures 1 and 2 show the location and the plan view (zy-coordinate) of
the test site in meter scale. Figures 2-4 show the entire sampling network
in the zy-, y2z- and zz-coordinate plane, respectively. In Figures 2-4, dots
() indicate sample locations with concentration less than 5 pCi/mL, and
circles with dots inside (@) represent samples whose concentration are
greater than or equal to 5 pCi/mL and less than 10 pCi/mL. The solid
circles (o) illustrate the samples with concentration greater than or equal
to 10 pCi/mL. Measured activities from the background appeared to be
1-3 pCi/mL. Samples greater than 4 pCi/mL are regarded as the injected
triated water plume. The approximate lateral boundary of the surface
expression of an old geological stream channel (meander) is shown by
dotted lines in Figures 1-2. This meander runs from the southwest to
the northeast direction with approximately 60° slope along the z-axis
and the apparent center of the channel passes about the point (z,y) =
(0,175). The groundwater flow follows the y-axis from the injection
point (approximately (z,y, 2z} = (0,0, 57.8)) to approximately y = 125 m
and then appears to follow the meander channel. Thus, in the meander
area, the coordinate system was corrected to follow the flow direction in
the analysis. Figure 3 shows the presence of two horizontal aquifer layers.
The upper aquifer above the approximate depth of z = 58.25 m in the
injection area is going slightly downward until 4 = 80 m, and then more
steeply to ¥ = 175 m. Thus, the injection occurred just below the aquifer
layer boundary. The center of plume has moved from the injection point
approximately to (x,y,z) = (—1.6,3.6,58.8) for the period of 328 days.
Based on Figures 2-4 and the other site information[5], the test site was
divided into five continuously overlapped regions: Region 1 (near field,
210 m < y < 25 m), Region 2 (17 m < y < 41 m), Region 3 (middle
field, 25 m < y < 125 m), Region 4 (100 m < y < 150 m}, and Region
5 (far field, meander area, 125 m < y < 300 m). The summary of
regionalization is shown in Table 1.

Estimation of macroscopic plume behavior

The primary deterministic processes in each region were estimated
using the approximating function defined by equation (2.4). For this
analysis m = 2 was chosen in equation (2.4) to demonstrate the fea-
sibility of our estimation method. Basic methodologies and principles
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for determining the initial parameters are similar for each region. How-
ever, Region 5 (meander area) required special attention in our study.
For each coordinate direction, the first basis function captures the main
profile of the concentration distribution such as height, width and the
symmetric axis of the exponential function, whereas the second basis
function in combination with the first function approximates the ob-
served concentration distribution. For af, ai and af, initial parameters
were chosen as the expected center of the plume in each direction. The
initial guesses for the parameters b7, bY and b3 were selected to adjust
the width of the concentration distribution for given initial parameter
sets a; = (af,a¥,af). The initial data for the second class of param-
eters ay = (a3, a3,a3) and by = (b%,b3,03) were chosen such that the
combination of two functions capture the field data distribution. The
parameter set ¢ = (c1, ¢} is related to the magnitude of concentration.
The Levenberg-Marquart method[21] was used for estimating parame-
ters in each region.

(1) Region 1 (near field):

This region contains the approximate injection point {0,0,57.8). The
parameter estimation for Region 1 is more difficult than that for the
other regions because the concentration in this region was controlled
by the apparent boundary between the two layers, the injection period,
the local mounding, and the radial flow from the injection well. The
estimated parameters for each region are given in Table 2. Table 2 also
shows the differences in the mean and variance values of the original
field data and the residuals. In Table 2, mean(residuals) indicates the
mean value of the residuals obtained from the field data by subtracting
the estimated values in each region, and o?(residuals) is the variance of
the residuals.

Figure 5 shows camparison between the original concentration dis-
tributions (+) and the estimated concentration (o) of the global plume
behavior at the same sampled locations. The total number of samples
used in this region was 775. Figure 6 shows the residuals in the z-
direction. The residuals still have certain distribution patterns which
probably come from characteristics of aquifer material and prediction
limitations associated with a m = 2 approximation of plume macro-
scopic bahavior. It was also observed, from the distribution of residuals,
that randomness of the residuals increased significantly compared with
the original distribution.
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(2) Region 2 - Region 4:

Region 2 connects Region 1 (near field) and Region 3 (middle field).
The magnitude of concentration changes significantly in y-direction. The
first basis function was chosen for fitting the trend from the near field,
and the second was chosen for capturing the trend from the middle
field. Region 4 connects the middle field and the meander area. The
upper aquifer above the approximate depth of z = 58 m in the near field
is going slightly downward until y = 80 m, and then more steeply to
y = 175 m (Figure 3}). The first basis function was chosen to capture
this steep slope, and the second basis function was set to fit the main
profile of the data distribution in the meander area.

(3) Region 5 {far field):

This region appears to be an old ox bow river bed that is buried
(Figures 1-3). In this region, the transform of the coordinate system was
needed to improve the accuracy of the approximation (equation (2.4)),
and to account for the symmetry and the ratio along the groundwater
flow path. Note that the y-axis was chosen as the groundwater flow path
and the z-axis was the transverse direction with respect to the y-axis.
Since the groundwater appears to flow along the river bed, the y-axis
should be set in the river bed direction. The river bed direction, width
and its depth can be found easily by changing the coordinate system
and observing the data distribution along the transformed axes. It was
observed that the angle between the river direction (north-east) with
the z-axis was approximately 60° and that the center of the river bed
passed through the point (z,y) = (0,175} (Figures 1-3). The corrected
coordinate system (Z,#, 2) appears to be

F==zcosa+ (¥ - y,)sina,
(6.1) = —xzsina + (y — yo) COS & + Yo,
==z

with @ = —(30/180)7 and y, = 175, where (x,y, z) is the original co-
ordinate system. No coordinate transform was made in the z-direction
since the water table over this region, 1256 m < y < 250 m, is approxi-
mately parallel to the sea level (see Figure 3). Recall that the data were
obtained from water samples in the saturated zone. The transformed
coordinate system (£, §, 2) was used for parameter estimation.

Variogram
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To obtain experimental variograms which are needed in kriging pro-
cedure, each region was divided into several blocks depending on the
distribution structure of the residuals. Entire five regions were divided
into twelve blocks with adjacent blocks overlapped. Since methodologies
to determine symmetry, ratio and correlation are similar for all blocks,
only Block 3 in Region 1 was chosen for our discussion. The applica-
tion strategies presented can be extended to any general field situation.
Block 3 consists of area surrounded by -7T0m <2 < 70 m, 5 m < y <
15 m, and 53 m < z < 64 m. This block is in Region 1 and located
at just behind the center of plume (approximately, ¥ = 3.6 m) along
the groundwater flow direction. Bock 3 showed the most complicated
data distribution structure among twelve blocks. The total number of
samples in this block was 306.

Symmetry

Even though the primary symmetric portion was extracted from the
field data, the residual deterministic components produced a symmet-
ric distribution. Symmetric behaviors were found in the r— and 2-
directions. No clear symmetric structure was found in the y-direction.
The symmetry axis in the y-direction was located approximately at
y = 2.1 m, outside (the left hand side of) Block 3 (see Table 3}). Note,
from Table 3, that there is a difference between the location of plume
center (y = 3.6 m) and the symmetry axis (¥ = 2.1 m) in y-direction.
The center of plume was estimated from original plume field data and
the symmeiry axis was measured from the residuals. An averaged vari-
ance was considered by applying by the formula (1/n(I)) E:’i‘? |Z; — Z;|
to each interval, where the intervals were continuously overlapped and
covered whole z-coordinate range, n(f) = k(k —1)/2 was the number of
sample pairs in the interval I and & was the number of samples. Forty
and fifteen intervals were used to obtain the averaged variances in the
z- and the z-direction, respectively. Since the symmetry axis is inde-
pendent of variance estimator used, other variance estimators such as
(/D) S5 12: — 23 or ((/n(D) T |2 — 2;]7)'/7, ete., may
be used to determine the symmetry axis. However, it is desirable to
use the variance estimator which has a similar structure to the correla-
tion estimator. The symmetric axes were, approximately, r = —1.5 m
and z = 585 m. To cover the uncertainty of precise symmetric axes,
the averaging method over small neighborhood of each lag was used to
estimate correlation between the data points.
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Ratio

To account for anisotropy effecting correlation, we considered a ratio
between the three directions, z, ¥ and z. The ratio is a realization of
the advection and dispersion/diffusion processes in conjunction with the
aquifer material. This ratio can be obtained by considering either the
plume distribution or the residuals. Based on the residual distributions
in the y- and z-direction, the ratio for Block 3 was determined. But,
the methodology for determining the ratio can be generally applied to
obtain the correlation between data distribution and the aquifer material
properties. From the plume distribution in each region (from Region 1
to Region 5), the ratio shows consistancy throughout the entire test site.

We considered the distribution of residuals whose absolute values are
greater than 20 (x20). Here, the symbol x20 represents the scaling
factor of the data. Other numbers such as 10 (x20) or 15 (%x20) may
be used to estimate the ratio. But, this number should be selected so
that it represents the main profile of the data distribution in the block
considered. The residuals whose absolute values are greater than 20
(x20) were distributed from approximately x = —5m to x = 5m. The
corresponding y- and z-ranges were from y = 5 m to y = 15 m and from
z = —56.5 m to z = 61.5 m, respectively. Since the x and z directions
have symmetric distribution behaviors, the ratio is approximately z :
y:2z=10/2:10:5/2 =2:4:1 This ratio varied slightly in each
region (from Region 1 to Region 5) and in each block (from Block 1 to
Block 12). However, overall the simple ratiox : y: 2 =2 :4 : 1 was
generally true (£ : §: 2 = 2 : 4 : 1 for Blocks 10-12) so this ratio was
set for estimating the correlation between data points. Here, (Z,7, 2) is
the transformed coordinate system (equation (6.1}) to incorporate the
flow direction in the meander area. From this ratio, any two points
separated by approximately 2 m distance in z-direction, 4 m distance in
y-direction, and 1 m distance in z-direction are considered to have the
same correlation in the average sense.

Figure 7 shows the improvement of an experimental semivariogram
by accounting for symmetry and ratio. For this comparison, the con-
ventional semivariogram:

1 n(h)
(6.2) v(h) = (k) > 1% -z,

i=1

was used, where n(h) is the number of pairs (Z;, Z;) separated by lag
h. Semivariograms were estimated by taking the average value over the
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interval [k — 1,k + 1] for the first case, and the corresponding intervals
for other cases. All three cases were plotted on the same scale. The first
semivariogram (dotted line with circles) was obtained by equation (6.1)
without any consideration of symmetry and ratio. It is interesting to see
that the correlation between lag (h) and semivariogram value (k) has
an inverse relationship. Distribution symmetry and outlier effects pro-
duce the inverse relation which is typical whenever the spatial structure
of groundwater contaminant data is estimated with conventional semi-
variograms. For a second semivariogram (dashdotted line with cross),
the symmetry (z = —1.5 m and z = 58.5 m) were incorporated. The
semivariogram for capturing the global trend is improved. The last
semivariogram (solid line with point) incorporate both symmetry and
ratio {(z : y : z = 2 : 4 : 1}. Compared to the second semivariogram
using symmetry alone, the final semivariogram accounts for both sym-
metry and ratio and produced improved correlations, i.e., the range of
variance between estimated values decreased.

The kriging procedure usually uses several (typically, 12-20) sample
values to estimate the value at the unsampled location. Thus, what
is really needed is a correlation in near the point or within half the
range of the lag distance in the semivariogram. From Figure 7, even
though a global semivariogram is obtained by considering symmetries
and ratio, the semivariogram in the range of 0 < h < 15 shows no
distinguishable correlation. This behavior may be due to the influence
of outliers. From equation (6.1), it can be seen that the influence of
outliers on the semivariogram increases by the square (|Z; — Z,;|?) as the
difference | Z; — Z;| increases. Therefore, to reduce outlier’s influence on
correlation, a robust estimator is required.

Robustness

Figure 8 illustrates the effectiveness of Rp-estimator. In all correla-
tions, the symmetries and ratio were taken into consideration. For the
first correlaton (+), the robust index p = 1 was chosen. The global pat-
tern of correlation is similar to the semivariogram (solid line) in Figure
7. But, the variogram shows improvement near the origin. The robust
indices p for the second (x) and the third (o) correlations in Figure 8
were % and %, respectively. As p approaches 0, the correlation near the
origin improves. The solid line in Figure 8 is a typical fitted mathemat-
ical model for the third variogram (o). The following exponential model
was used to fit the correlation.

(6.3) v(a, 3,¢0; h) = 0+ ¢ (B(1 — exp(—h/a)).
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The fitted parameters were ¢ = 20, & = 1.1, 3 = 1.9 and <0 = 0.95,
where ¢ is the scaling factor. The parameters were chosen so that the
model {exponential} captured the variogram within the range 0 < h < 6,
because the variogram in this range will be used for the kriging proce-
dure. Symmetries, ratio, and fitted model parameters for variograms for
other blocks were summarized in Table 3.

In Table 3, d is the lag average and (Z, 9, £) is the transformed coor-
dinate system (equation (6.1)) for the meander area. Note that there is
an apparent symmetry § = 183 m in fj-direction for Blocks 10-12. The
robust indices p for Blocks 1-5 in the range of -10 m < y < 40 m are
much smaller than those of other blocks in the middle or far field. Note
that p = 1/8 for Block 3. Recall that Block 3 has the most complex data
distribution structure among Blocks 1-12. Figure 9 shows fitted model
variograms for Blocks 1-12. To compare each variogram, the nugget ef-
fect ¢ x ¢0 in Table 3 was subtracted from the estimated value R,(h} for
each block.

Kriging

Using the exponential variogram models (equation (6.3)} fitted to
experimental variograms obtained by the R,-estimator, punctual kriging
was used to estimate residuals at unmeasured locations. Anisotropies
such as symmetry and ratio were considered. The symmetry may cause
sigularity of the kriging matrix. If, for example, two samples selected
for kriging happen to be located at exactly symmetric positions, only
one sample was selected for kriging. The averaged value of those two
samples was assigned for the value of this sample. In kriging procedure,
the weight for this sample was doubled to take account for the eliminated
sample due to symmetry. At each estimating point, 25-35 samples were
used for kriging.

7. Conclusion

The spatial or temporal distribution of groundwater contaminant con-
centrations has different behavior in macroscale as well as microscale
compared to that of other geostatistical subjects such as the elevation
of the ground surface or changes in grade within an ore body. Un-
like most other geostatical subjects described by stationary process, the
trajectory of the contaminant plume follows complex dynamical pro-
cesses which may be described approximately by a transport equation.
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Application of geostatistical methods to the groundwater contaminant
concentrations has a difficulty because they do not obey the stationary
or semistationary assumption. In this paper, a practical, systematic,
three-dimensional estimation method for in situ groundwater contami-
nant concentrations was introduced. After extracting the macroscopic
plume behavior from field data, geostatistical estimation methods were
applied to residuals. Methodologies and principles on how to choose
the approximating function and the initial parameters for estimating
the global plume behavior were explained. A robust R,-estimator was
introduced. This estimator reduces outlier effects systematically and
produces correlations between data points. These correlations are used
for determining variogram models which needed for kriging a spatially
distributed parameter at unsampled location.

In our application, after extracting macroscopic plume behavior from
the tritium data, the randomness of the residuals was increased signifi-
cantly compared with that of the original data set. The R-estimator re-
duced outlier effects on obtaining correlation between the residuals, and
produced good experimental variograms. The estimated tritiutm con-
centrations were calculated by the following formula: Total estimated
value = Estimated value of macroscopic transport portion + Residual
value estimated by kriging. Kriging was performed throughout all twelve
blocks (Table 3) in 2 m, 4 m, and 1 m intervals in the x-, y-, and z-
directions. The total data set obtained ranges from -70 m to 70 m, from
-10 m to 300 m, and 53 m to 64 m in the z-, y-, and z-coordinates.
Figures 10 and 11 are contour plots of the tritiated water concentra-
tion distributions for the zy-cut plane at z = 59m and for the yz-cut
plane at & = 0m, respectively. Contours were chosen for concentra-
tions C = 5, 10, 20, 50, 500, 2000 pCi/mL. Concentrations greater than
4 pCi/mL were regarded as the injected tritiated water plume. Com-
pared with the in situ concentration distribution data (Figures 2-3),
Figures 10-11 represent total estimated values on uniform grids. Figure
12 shows a perspective view of the isosurface with concentration C =5
pCi/mL of the tritiated water plume.
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TABLE 1. Regionalization

Reg.1{y} | Reg.2(y)| Reg.3(y)| Reg4(y) | Reg.5(y)
range(m)
—70 <z <70 |[—10,25] | [17,41] |[25,125] | [100,150] | (125, 300]
53 < z < 64
TABLE 2. Parameter estimation
Region 1| Region 2 | Region 3| Region 4| Region 5
num. of samples 775 291 729 233 763
mean(field data)| 136.90 14.59 851 4.80 5.36
o?(field data)| 183854 2164.11  326.16 39.19 31.91
estimated A
af | -1.5777 | -1.0388 |.-6.7366 | 0.5244 | a¥=3.0551
a¥ | 3.5673 | -46.3318 | 26.4202 | 115.3410 |a¥=174.1736
of | 58.7535 { 59.2096 | 60.2719 | 58.9507 | @f=57.2405
b9 | 3.1662 | 6.8355 | 2.3997 | 6.6973 | »¥=21.0780
BY | 3.1932 | 68.4465 | 20.1242 | 18.9481 | bY=36.7760
| 07509 | 1.6122| 0.7954 | 1.9855 £-3.7705
c1 | 2564.51 | 212.0565 | 132.5352 | 39.7180 | ¢1=19/5050
af | -0.7880 | 0.8700 | 1.0305 | -12.9028 | a3=4.7229
af | 9.6721 | -44.5587 | 65.7696 | 212.6386 | af=281.6550
a3 | 58.7961 | 58.5933 | 59.1561 | 57.8191 | a$=58.6649
£ | 3.0609 | 108718 | 7.9127 | 52.2654 | bE=72.5429
by | 7.1115 | 48.4521 | 83.3313 | 88.9769 | b=214.5971
bi | 1.9222 | 4.4246 | 2.4166 | 3.7290 | b5=6.4690
co | 1690.38 | 97.0468 | 44.5492 | 15.1114 | ¢;=4.9264
mean(residuals) 11.17 | 0.7252 0.83 0.12 0.01
a2(residuals) | 63649 | 1750.5 | 174.66 10.98 16.67
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TABLE 3. Symmetry, ratio{z : y : 2z}, average(d)

and variogram(R,(h) = co + c(B3(L — e */*))

block ranse . .
(sampels) —70 < x < 70 | sym. axis ratio | p, d variogram
B3<z< 64 )
Block 1 z = 0.0 24:1 p=1/2] cp=05¢=20
(224)] —10<y<3! y=21 d=02| a=22 8=25
Block 2 z=—0.9 2:4:1| p=1/6| o =25, c= 20
(313)| 0<y<i10| y=21 d=02| a=11,3=22
z = b58.6
Block 3 z=-15 2:4:1 p=1/8| ¢ =095, ¢=20
(306) S<y<1b| z=159.0 d=102 a=11,8=19
Block 4 z=—0.6 2:4:1| p=1/4| g = 0.45, ¢ = 20
(224)] 10<y<25] 2="59.0 d=02| a=11,8=12
Block 5 z=0.0 2:4:1{ p=1/4 co=38c=1
(224) 17 <y <41 z=59.0 d=02| «=122 8=105
Block 6 z=0.0 2:4:1{p=1/2 cg=45,c=1
(293)| 25 <y < 55| z=59.5 d=102 |a=150,3=16.0
Block 7 z=12 2:4:1{p=1/4 c=30,e=1
(319)| B0<y <90 | 2=59.4 d=02| a=508=40
Block 8 z=20 2:4:1| p=1/2| ¢p=175e=1
(214)| 80 < y< 125 z2=159.0 d=02| a=100,5=6.0
Block 9 z=2.0 24:1 p=1/2 c=1212,¢=1
{233)|100 < y < 150 | 2 = 58.0 d=04 a=52 =20
Block 10 E=—-1|(E:9:8) |p=1/2 cp=25,¢c=1
(351)| 125 <y < 200| ¢ =183 2:4:1|d=10.2 a=230 0=26
2 =058.5

Block 11 E=-1({&:§:2) |p=1/2 cg=20,e=1
(263)] 175 <y < 225 § =183 2:4:1|d=0.2 a=35 =21
Block 12 F=-1{(Z:§:3) |p=1/2 c=12,¢=1
(400)| 200 < y < 300| § =183 24:1|d=04| a=508=12

549
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(zy-cut plane along z = 59m: C(pCi/mL)= 5, 10, 20, 50, 500
and 2000).

Fig. 11. Contour of the tritiated water concentration:
{yz-cut plane along x = 0m: C(pCi/mL)= 5, 10, 20, 50, 500
and 2000).

Fig. 12. Three-dimensional perspective view of the plume (entire site):
(Isosurface of C=5 pCi/mL).
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