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EMPIRICAL REALITIES FOR A MINIMAL
DESCRIPTION RISKY ASSET MODEL.
THE NEED FOR FRACTAL FEATURES

CHRISTOPHER C. HEYDE AND S. Liu

ABSTRACT. The classical Geometric Brownian motion (GBM) model
for the price of a risky asset, from which the huge financial deriva-
tives industry has developed, stipulates that the log returns are
iild Gaussian. However, typical log returns data show a distribu-
tion with much higher peaks and heavier tails than the Gaussian
as well as evidence of strong and persistent dependence. In this
paper we describe a simple replacement for GBM, a fractal activity
time Geometric Brownian motion (FATGBM) model based on frac-
tal activity time which readily explains these observed features in
the data. Consequences of the model are explained, and examples
are given to illustrate how the self-similar scaling properties of the
activity time check out in practice.

1. Introduction: mathematical models

Simple mathematical models of systems in science, engineering and
business have been successful in providing much quantitative insight into
their likely behaviour and performance. Nevertheless, the explanatory
value of the simple models can be expected to have limitations, and
predictions made therefrom to require gualification. It must be regarded
as unusual, indeed remarkable, when a simple mathematical model has
a key role in spawning a multi-billion dollar industry. But this is indeed
what has happened with the geometric Brownian motion (GBM) model
for the price of a risky asset. The option pricing industry was largely
fueled by the success of Black and Scholes in obtaining an analytical
pricing formula for the European option under the GBM model. The
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simple GBM model made this possible, and now thousands of traders
and investors use the formula every day.

The ground breaking papers of Black and Scholes (1973) and Merton
(1973) on option pricing were recognized by the award of the Nobel Prize
for Economics to Scholes and Merton in 1997. Black, who died in 1995,
would undoubtedly have shared in the award had he lived long enough.

The year 1973 also saw the introduction of exchange traded options
and stock, exchange rate, commodity and futures options, and other
financial derivatives, are now traded all over the world. The market for
these has now grown to the extent that its worth is regularly reported
as more than $US20 trillion.

When used in relation to financial instruments, options are generally
understood as contracts between two parties which give one party the
right, but not the obligation, to buy or sell an underlying asset at some
time in the future. The concept is certainly not new. For example, the
ancient Phonecians, Romans and Greeks traded options against outgoing
cargos from seaports. What is new is the very widespread use of these
instruments for the offsetting of risk.

The paradigm (GBM) model in mathematical finance which has fa-
cilitated all this activity is our natural point of reference. Under this
model the price F; at time ¢ of a risky asset is

P, = Pyexplut + oW (1)

where Fp is the price at time 0, u,0? > 0 are fixed constants and W (t)
is a standard Brownian motion. Then the corresponding log returns

Xi=log B —log P,m1 = pu+o(W(t) - Wt — 1))

are iid Gaussian with mean p and variance o°. Few models could be

simpler.
In contrast, the typical log returns data shows:

e a pronounced leptokurtic distribution (much higher peaks and
heavier tails than Gaussian),

e a time series with high volatility and {often) intermittency, quite
unlike Gaussian white noise,

e evidence of strong dependence.

In Section 2 we outline the statistical evidence against the GBM
model, treating each of the abovementioned features in turn. In Section
3 we explain the fractal activity time geometric Brownian motion (FAT-
GBM) model introduced by Heyde (1999) and indicate how this resolves
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the statistical problems experienced by the GBM model. Empirical ev-
idence of support for the fractal scaling of the model is also supplied.
In Section 4 it is indicated how the FATBGM model can be used for
option pricing, and a direct comparison with the corresponding results
of Black and Scholes is given.

2. The basic evidence

2.1, Tails

It is now generally accepted that leptokurtosis with heavier tails than
the normal is a necessary model feature for marginal distributions of
returns. Arguments continue over how heavy they are and certainly
hyperbolic distributions fit the central zone of the distribution well. But
the extreme observations, say 1% of the data, which typically go out 6
or more standard deviations and are the features of most interest and
concern, require tails which are asymptotically of Pareto type, namely
of the form

(1) P Xy >x)~ex™, ¢>0, a>0

as r — oo. Indeed, there is considerable support for the use of a .-
distribution for X;, v being the degrees of freedom, and typically 3 <
v < 6. Support for this form dates back at least to Praetz (1972) and
recent. comparisons using market index data have been given in Hurst,
Platen and Rachev (1997) and Hurst and Platen (1997). If X; has a
t,-distribution, then (1) holds with & = v and X; has an infinite k-th
moment for k > v.

Figure 1 contains histograms for the density of X; for representa-
tive examples of index (Standard & Poors 500), foreign exchange ($US/
Deutchmark) and common stock (Chevron) data. Here S&P contains
8813 daily observations (Nov. 64 to Nov. 99), USD/DEM contains 5764
daily observations (Jan. 71 to Dec. 93} and Chevron contains 7561 daily
observations (Jan. 70 to Dec. 99). Estimates of v for the data in Figure
1 are all between 3 and 4.

For a general discussion of the issue of tail size see Chapter IV.2 of
Shiryaev (1999}

2.2. Dependence

The next issue for modelling is that of strong dependence in the data.
Log returns time series are very different from white noise. They exhibit
more volatility and sometimes (especially for index data) a clustering of
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Ficure 1. Histograms for S&P, USD/DEM and
Chevron (left to right), with corresponding N (0, 1) (lower
curve) and t4 density (scaled to have variance 1) (upper
curve) superimposed

extremes (intermittency). Sample autocorrelations of the log returns
always die away quickly but this is not the case for their absolute values
or squares which have non-negligible values for very large lags. This
phenomenon has been noted by various authors. See for example Greene
and Fielitz (1979), Ding and Granger (1996), Granger and Ding (1996).
From these persistent correlations we must conclude that the absolute
values and squares of the return times exhibit long range dependence
(LRD), classically defined (for stationary finite variance processes) as
holding if 3 5o ;v diverges, v being the autocorrelation at lag k. For
a discussion of the definition and its extensions see Heyde and Yang
(1997). For a comprehensive overview of the subject of LRD see Beran
(1994).

Figures 2-4 contain plots of the autocorrelations, over 200 day peri-
ods, of the log returns, their squares, and their absolute values, again
for the representative examples S&P, USD/DEM and Chevron.

3. Modelling to retain the essential features of the GBM
model

The objective is a minimal description model, the simplest practicable
extension of the GBM model which has the necessary features outlined
above in Section 2 and is also sufficiently tractable to enable it to be
used for such things as the pricing of options. This can all be achieved
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FIGURE 2. Autocorrelation function of the returns, their
squares and their absolute values (low to high) for S&P.
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FIGURE 3. Autocorrelation function of the returns, their
squares and their absolute values (low to high) for

USD/DEM.
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successfully with the fractal activity time geometric Brownian motion
(FATGBM) model introduced by Heyde (1999), as we will now indicate.

3.1. The FATGBM subordinator model

We retain the GBM assumption that the {log P;} process should have
stationary differences, but now with heavy tails and the absoclute values
and squares of the differences should exhibit LRD. To achieve this, we
suppose that

P, = explut + oW (1))
where the (market) activity time {7}} is a positive increasing random

process with stationary differences which is independent of the Brownian
motion {W(t)} and the differences of the {7}} process are LRD and have
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FIGURE 4. Autocorrelation function of the returns, their
squares and their absolute values (low to high} for
Chevron.

heavy tails. Clock time just does not correspond to activity time (also
called trading time or intrinsic market time).

The activity time process {73} is assumed to have a finite mean.
Then, by the ergodic theorem, and in view of its stationary differences,
T, ~ ct almost surely as t — oo, for some ¢ > 0, and without loss of
generality we may choose ¢ = 1, the scaling being absorbed into the .

One of the important things about the model is that {W(T;), F
(W(s),s < T;)} is a martingale. So the efficient market hypothesis is
being retained and there are no arbitrage opportunities.

. We now show that the FATGBM model has all the features suggested
by the data. We have ’

X; = logP —logF

= p+o(W(T) - W(Ti-1))

d

S pto(l - T)PWQ),
where & denotes equality in distribuiion and the heavy tails of the X;
come from those of i, = T, — T;_1. Also, for kK = 1,2,... and centered
variables,

cov(Xy, Xepx) = 0
cov(1Xel, | Xearl) = (Q/W)Uzco"(’ftlﬂ,Tt+k1/2)

COV(tha Xt+k2) = U4C0V(Tt, Terk),

the last if Er2 < 0o. Thus, LRD of {|X;|} and {X;*} follows from that
of {r}/2} and {m} respectively.
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Other features of the model are conditional heteroscedasity,
var(X;|Fi_1) = 02 E(my| Fi-1),
and leptokurtosis
Kurtosis(X;) = 3(1 + varr) > 3.

The model provides a coherent formulation for all time scales in con-
trast to the discrete time ARCH, GARCH type models which may not
rescale well.

3.2. Fractal scaling of the activity time process

We now consider the activity time process in more detail, noting that
it should exhibit LRD.

Although the activity time process {T;} is not observed directly it
can be empirically constructed. Note that the use of Ito’s formula gives

dF, 1
dlog P, — ?: = 302(1:1;

from which the increments of the {7;} process may be obtained in a
discretized approximation. This allows the process to be checked for
scaling properties and a remarkable fact emerges. To a good degree
of first approximation, the process {T; — t} is self-similar with index
H,1 < H < 1. That is, for positive

T, ot S (T, )

where here = denotes equality of finite dimensional distributions. The
desired LRD properties then follow as a simple consequence.

The approximate self-similarity can easily be checked via estimation
of H over a wide range of time scales. Suppose that the price B is
observed over a fixed time interval [0,7] and let

N
Sy(8) = |Tis —~ T—1ys — 81%/N
i=1
where 7 = N§ and 0 < ¢ < p with ET\P < oo. If {T; — t} is self-similar,
then
log ES,(6) = Hqlogé + log EiTy — 1|4

for 0 < ¢ < p. Now the ergodic theorem ensures that S;(4) % ES,(5)
as N — 0o, and one can estimate H separately at each of a broad range
of & values. A high degree of consistency of these estimates is observed
in practice.
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Figures 5-7 contain plots of estimated values of (log ES,(8)—log E|T} —
1|9)/ log § against ¢ for values ¢ = 5,10, ..., 1280 and for ¢ in the allowable
range where 7; has a finite gth moment for examples of index, foreign
exchange and common stock data. The estimates of H are very stable
over a period from 5 days to 5 years. The values are all = 0.78 for
S&P (Figure 5), H = 0.75 for USD/DEM (Figure 6} and H = .76 for
Chevron (Figure 7).

Additional support for the claim of approximate self-similarity can
be obtained from an analysis of the scaling properties of the process
{E§-=1 X;?}. This is so because {T;} is the quadratic variation process
associated with the {log F;} process, and hence if

Xst = log Py — log Psiz_y),

then

(/4]
: 2
T, = 5£%1+ E 1 X5; a8
J:

Thus, {22:1 X;?} approximates {T;} and its scaling can be conveniently
checked using wavelets. In Figure 8 one sample plot is given indicating
a straight line plot over 8 octaves as is expected for a self-similar model.
The estimated value of 2.2 for the scaling parameter « clearly indicates
underlying long range dependence. Here we have used software based
mainly on LDestimate.m written in Matlab for the logscale diagram,
a wavelet analysis framework for time series. For an introduction and
uses, see e.g. Abry et al. (2000) and Veitch and Abry (1999). More
details concerning scaling will be provided in a forthcoming paper of
Heyde and Liu (2001).

The FATGBM model is distinctively different from earlier subordi-
nator models (which date back to Mandelbrot and Taylor (1967); see
Heyde (1999) for more details) in its recognition of self-similar scaling
and the associated long range dependence.

Subordinator models are also closely related to stochastic volatility
models in which a stochastic differential equation is hypothesized for
the volatility process {¢(¢)} which would be related to the activity time
process {Ti} herein by o?T; = fot o?(u)du. The FATGBM model cir-
cumvents such assumptions by using the observed self-similarity.
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FIGURE B. Scaling plots for S&P. Periods from 5 to 1280
days. Slope estimates for all nine plots H = (.73,
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FI1GURE 6. Scaling plots for USD/DEM. Periods from 5
to 1280 days. Slope estimates for all nine plots H = 0.75.
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FIGURE 7. Scaling plots fro Chevron. Periods from 5 to
1280days. Slope estimates for all nine plots H = 0.76.



