GENERALIZATIONS OF THE NASH EQUILIBRIUM THEOREM ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie (Department of Mathematics, Seoul National University)
  • 발행 : 2001.07.01

초록

Generalized forms of the von neumann-Sion type minimax theorem, the Fan-Ma intersection theorem, the Fan-a type analytic alternative, and the Nash-Ma equilibrium theorem hold for generalized convex spaces without having any linear structure.

키워드

참고문헌

  1. C. R. Acad. Sci. Paris Ser. I Math. v.295 Une Alternative non lineaire en analyse convexe et applications H. Ben-El-Mechaiekh;P. Deguire;A. Granas(et)
  2. J. Math. Anal. Appl. v.127 Simplical convexity and its applications R. Bielawski
  3. Soochow J. Math v.15 A generalization of KKM principle and its applications S. Y. Chang
  4. Proc. Natl. Acad. Sci. v.38 Fixed point and minimax theorems in locally convex linear spaces K. Fan
  5. C. R. Acad. Sci. Paris Ser. I Math. v.259 Sur un theoreme minimax
  6. Math. Ann. v.163 Applications of a theorem concerning sets with convex sections
  7. Proc. Amer. Math. Soc. v.3 A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points I. L. Glicksberg
  8. Lect. Notes in Nonlinear Anal v.2 Leray-Schauder type theorems and equilibrium existance theorems A. Idzik;S. Park
  9. Duke Math. J. v.8 A generalization of Brouwer's fixed-point theorem S. Kakutani
  10. Non-linear Anal. v.39 The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications W. A. Kirk;B. Sims;G. X. Z. Yuan
  11. J. Math. Anal. Appl. v.27 On sets with convex sections T. W. Ma
  12. Ann. of Math. v.54 Non-cooperative games J. Nash
  13. Pacific J. Math. v.5 Note on non-cooperative games H. Nikaldo;K. Isoda
  14. J. Korean Math. Soc. v.28 Variational inequalities and extremal principles Sehie Park
  15. J. Korean Math. Soc. v.31 Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps S. Park
  16. Nonlinear Funct. Anal. Appl. v.1 Applications of the Idzik fixed point theorem
  17. Appl. Math. Lett. v.11 no.5 Remarks on a social equilibrium existence theorem of G. Debreu
  18. Numer. Funct. Anal. Optim v.20 Continuous selection theorems in generalized convex spaces
  19. Vietnam J. Math. v.27 Ninety years of the Brouwer fixed point theorem
  20. Josai Math. Monogr. v.1 Minimax theorems and the Nash equilibria on generalized convex spaces
  21. Korean J. Comp. Appl. Math. v.7 Elements of the KKM theory for generalized convex spaces
  22. Int. J. Math. Math. Sci. v.24 Fixed points, intersection theorems, variational inequalities and equilibrium theorems
  23. J. Comput. Appl. Math. v.113 Acyclic versions of the von Neumann and Nash equilibrium theorems
  24. J. Korean Math Soc. v.37 Fixed points of better admissible maps on generalized convex spaces
  25. Non-linear Anal. New topological versions of the Fan-Browder fixed point theorem
  26. Bull. Korean Math. Soc. v.27 On generalized extremal principles S. Park;S. K. Kim
  27. Colloq. Math. v.71 The Idzik type quasivariational inequalities and non-compact optimization problems S. Park;J. A. Park
  28. Proc. Sympos. Pure Math., Amer. Math. Soc. v.45 Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems S. Simons
  29. Pacific J. Math v.8 On general minimax theorems M. Sion
  30. Internat. J. Game Theory v.24 Existence theorems of Nash equilibria for non-cooperative N-person games K. K. Tan;J. Yu;X. Z. Yuan
  31. J. Austral. Math. Soc. v.53 Fixed point theorems in H-spaces and equilibrium points of abstract economies E. Tarafdar
  32. Math. Ann. v.100 Zur Theorie der Gesellschaftsspiele J. von Neumann
  33. Ergeb. Math. Kolloq. v.8 Uber ein okonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes