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WHITE NOISE APPROACH
TO FEYNMAN INTEGRALS

TAKEYUKI HiDA

ABsTRACT. The trajectory of a classical dynamics is detrmined by
the least action principle. As soon as we come to quantum dynam-
ics, we have to consider all possible trajectories which are proposed
to be a sum of the classical trajectory and Brownian fluctuation.
Thus, the action involves the square of the derivative B(t) (white
noise} of a Brownian motion B(t) . The square is a typical example
of a generalized white noise functional. The Feynman propagator
should therefore be an average of a certain generalized white noise
functional. This idea can be applied to a large class of dynamics
with various kinds of Lagrangians.

1. Introduction

As is well known, in the classical Hamiltonian mechanics, the trajec-
tory of a dynamical system is given by the Lagrangian in such a way
that the action attains the extremal values at the trajectory which is to
be actually realized.

We are interested in a tramsition from classical mechanics to quan-
tum dynamics, having been motovated by Dirac’s approach. According
to the Feynman’s original idea to establish the third formulation of non-
relativistic quantum mechanics, a probability amplitude should be asso-
clated with the entire motion of a particle which is a function of time,
rather than simply with a position of the particle at particular instant.

From the probabilistic viewpoint, we are led to consider an ensemble
of sample functions of a certain stochastic process, which we shall spec-
ify later. The Feynman’s theory (1948) has taken this viewpoint and
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proposed a method of the path integral to form the quantum mechani-
cal propagator, if we understand correctly. His profound idea is to take
the average of a certain functional, involving the action integral, over an
ensemble of possible trajectories.

Many attempts have been made to give mathematical interpretations
to this formulation. Under such circumstances, we have proposed (1983)
a reasonable, visualized and of course mathematically rigorous formula-
tion of of the Feynman path integral. The present note aims at a quick
review of our results and some discussions for further interpretations of
this theory.

Actually, in the present report a white noise approach to the Feyn-
man path integral is discussed. For this purpose some background of
stochastic process is given in Section 2. From the viewpoint of dynam-
ical theory, the Brownian bridge plays an important role, so that it is
briefly discussed, although it is well known. The significance of a Brown-
ian bridge is that, like in the classical mechanics, it has time reversibility
property.

We then come to our formulation of the path integral by using a Brow-
nian bridge in Section 3. For the setup it is necessary to prepare the
theory of generalized white noise functionals, With this notion it is pos-
sible to give a visualized expression of the so-called Feynman functional
without any tricks, like imaginary variance or taking approximation.
This is just the advantage of our method.

It is also well known that many results have been obtained in this
direction by various authors, in particular by LS!L. Streit and his group
have developed extensively (some of the literatures are listed in the Ref-
erences; there are many others). The present note will not come to
mention those results, however just a short remark related to this topic
will be given in the concluding remark in the last section.

2. Background

White noise is a standard Gaussian measure space (F*, u), where E*
is the dual space of a nuclear space E which is a subspace of L%(R) and
i is a Gaussian measure on E™ such that its characteristic functional is
given by

C(6) = expl— 1)

Each member = in E* with the measure p is viewed as a sample
function of B(t) which is the time derivative of a Brownian motion B(t).
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Thus, the B(t) itself is also called white noise. Now set
B(t,z)(= B(t)) = (2, x[o.4):

Then, it can be shown that B(t) is a version of Brownian motion.

The complex Hilbert space (L?) = L?(E*, ) is a Fock space in the
sense that it admits a direct sum decomposition into homogeneous chaos
H,,n=0,1,2,..:

(L)) = @H,.

Brownian motion B(t) lives in the subspace H;. It should be noted
that if a Brownian motion B(t) shares the time propagation with the
white noise, then its expression is unique up to sign. Namely, it is the
one defined just above.

In order to come to our main topic we need to introduce a class of
white noise functionals much wider than (L?). This will be done in the
Section 4.

3. Brownian bridge

A Brownian bridge is, intuitively speaking, a Gaussian process that
starts from the origin 0 and returns to 0 again at a fixed time, say at
instant 7. Inbetween it behaves like an ordinary Brownian motion (see,
e.g. [7] §2.5.). It can be realized, for example, as follows.

Take a time interval [0, T]. Set

Xp(t) = B(t) - %B(T).

Then, Xv(t),t € [0,7] is a Brownian bridge for the time interval
[0,T]. It is a Gaussian Markov process. The canonical representation
(for definition, see [5], or briefly [7]) is given by

XT(t)=(T—t)/OtT1

B (u)du.

—u
It has mean 0 and covariance function
T(t,8) =T (EA (T - ) A(T — 8)),

where A means the minimum. Note that the B (¢) is the innovation of
the Xp(t).

If X7(t) is normalized (i.e. divided by the standard deviation to
have unit variance), then the resultant process Yr(t)enjoys the so-called
projective invariance property. It is stated as follows.
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THEOREM 1. If g is a projective transformation acting on the time
interval [0, T, then {Yr(t)} and {Yr(gt)} are the same Gaussian process.

This theorem is known; for proof see e.g. [7] Chapt.5.

This property gives us a suggestion to our further directions.

The backward canonical representation, which can be defined as a
counterpart of the canonical representation, is given by

THEOREM 2. The expression
Ty,
Xt = t/ — By (u)du
T
is the backward canonical representation of a Brownian bridge.

The proof comes from the computation of the covariance function
and the fact that the By(t) is obtained from the values X7 (u),u > ¢.

The projective invariance gives a bridge that connects the two repre-
sentations; one is the (forward) canonical representation and the other
is the backward canonical one. More analytically, they are connected
through a member of the infinite dimensional rotation group acting on
E.

Note that for two representations, the directions of the time evolution
are different, one is ordinary direction and the other is the reverse. We
therefore claim that a Brownian bridge is time reversible in the sense of
stochastic process. Further discussion on this notion will be given in the
separate paper.

4. The Feynman functional

We are now ready to propose an expression of path integral. Assume
that a Lagrangian L{z, ) is given for a time interval [0, T]. Then, the
classical path, denoted by y(t), is uniquely determined. As soon as we
come to quantum mechanics, we have to consider all possible trajectories
x(t). We propose that a quantum mechanical trajectory z(t} is a sum of
the classical path and a fluctuation which is given by a Brownian bridge
XT(f):

o(0) = y(t) + ()P Xr (), t € 0,T]

Now we have to give a plausible interpretation why such a proposal
seems to be fitting in line with Feynman’s idea (we hope).
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The fluctuation term Xz(t) should be a Markov process (see [2]
Chapt.5). The time reversible property is acceptable, if we understand
correctly, because of the property of mechanics. A certain kind of op-
timality from the viewpoint of probability theory implies that the dis-
tribution should be Gaussian. Thus, we can accept the formula for x(t)
(see, e.g. [7], [9])

The classical action is

S[z] = ]0 L(z, &)dt.

Typical Lagrangian is of the form
1
L(x, &) = §m¢2 —V(z).

Hence, the propagator G(y1.y2,T") is given by

im [T 1 7.
0 0

exp [—% /O ) V(:c(t))dt] }.

The factor involving B(t)? serves to flatten the Gaussian measure.

REMARK. In our earlier paper [9], we take just a Brownian motion as
the fluctuation to form a possible trajectory. We therefore put the delta
function (indeed, the Donsker’s delta function} to have pinning effect at
instant T

As is seen in the expression of the propagator, we have a good vi-
sualized and even illustrative formula, however we have to pay a price;
namely the term B(¢)? is involved even twice. We have therefore to ap-
peal to the theory of generalized white noise functionals. A short note
on this fact is stated below.

Starting from the Fock space, we can define a Gel’fand triple by using
the second quantization technique with the operator

A=—-D?+u?+1, D:differential operator,
such that
(8) C (L) < (9)".
The space (S) is the space of test functionals and (5)* is that of

generalized (white noise) functionals.
Good examples are now in order.
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ExaMPLE 1. A polynomial in z(t) of degree 2 may be written as

1

e

where z is a sample function of white noise; hence the above functional
may be written as : B(t)? :. These formulas look like formal expres-

sions, however we can give good interpretation. In this case we need the
additive renormalization as much as %.

cx()? = 2(t)? -

ExaMPLE 2. Exponential function.

Nexp[f x(t)2dt],

where N is the factor put for the multiplicative renormalization.

ExaMpPLE 3. Donsker’s delta function. It is given by

So(B(t) - a).

The functionals in Example 1 and Example 2 are used in the formula-
tion of the propagator G(y1,¥2,T) and the Donsker’s deltafunction has
been used in [9].

These generalized functionals make the formulation rigorous and vi-
sualized.

5. Concluding remark

As was mentioned before, our setup for Feynman’s path integral has
effectively been applied to systems with various Lagrangians and gen-
eralizations of the theory have been reported; we mainly refer to the
results by L.Streit and others, where further developments are included.
Also, as is suggested by [1], and by the Tomonaga-Schwinger equation,
we are naturally led to the case of multi-dimensional parameter. This is
one of the reason why we expect the study of random fields.
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