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4-DIMENSIONAL CRITICAL WEYL STRUCTURES

Jongsu KiMm

ABSTRACT. We view Weyl structures as generalizations of Rie-
mannian metrics and study the critical points of geometric func-
tionals which invelve scalar curvature, defined on the space of Weyl
structures on a closed 4-manifold. The main goal here is to provide
a framework to analyze critical Weyl structures by defining func-
tionals, discussing function spaces and writing down basic formulas
for the equations of critical points.

1. Introduction

A Weyl structure on a smooth manifold M consists of a conformal
class {g] of Riemannian metrics and a torsion-free connection D) preserv-
ing [g], i.e. for any metric g in [g], Dg = w ® g for a 1-form w. This
structure may be viewed as a generalization of a Riemannian metric be-
cause given a Riemannian metric one can associate its conformal class
and Levi-Civita connection. More precisely, the space of Riemannian
metrics with unit volume, when M is compact, is canonically embedded
in the space of Weyl structures (see section 2).

The study of Weyl structures stemmed from E. Cartan’s work [4]
on 3-dimensional Einstein- Weyl structures which are generalizations of
Einstein metrics in Riemannian or Lorentzian geometry. A Weyl struc-
ture is called Einstein- Weyl if the symmetric part of the Rieci curvature
is proportional to a metric in [g]. Weyl geometry arises naturally in the
study of almost hermitian geometry and contact geometry. And it has
been recently explored much to understand Einstein-Weyl structures [5,
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6, 7, 10, 11, 12, 13]. An interesting part of Einstein-Weyl geometry is
that it reveals much analogy to Einstein geometry.

Motivated by these works, we want to study critical Weyl struc-
tures, partly to understand Einstein-Weyl structures better and partly
to search for other special Weyl structures.

In Riemannian geometry the total scalar curvature functional and the
squared L? norm functional of scalar curvature have played important
roles in the study of scalar curvature and Riemannian functionals [3,
Chap. 4j. We discuss on generalizing them and define corresponding
functionals on the space of Weyl structures.

To analyze critical structures of Weyl functionals in this paper and
in a sequel paper (8] we needed to describe the space of Weyl structures
as a Banach manifold, which is done in section 4 of this paper. This
follows a standard type of argument in nonlinear Banach analysis. We
do this partly for the sake of completeness and also because we could
not find the exact literature clearly stating it. One may also read [3]
and references therein.

Then we set up the formulas for the equations of critical structures.
From analyzing them, we find that in most cases critical structures are
locally conformally a metric and that under mild conditions they are
Einstein metrics or metrics with zero scalar curvature (see section 3 and
5 for details).

The paper is organized as follows: In section 2 we describe definitions
and basic facts in Riemannian and Weyl geometry. In section 3 we study
critical points of the total conformal scalar curvature functional. In
section 4 we explain the Banach manifold structure of the space of Weyl
structures. In section 5, we discuss on generalizations of the squared L?
norm functional of scalar curvature and study its critical points. ‘

Finally, T would like to thank the referee for his many valuable sug-
gestions.

2. Preliminaries

In this section we shall review some basics on Weyl geometry (7, 11]
and recall definitions and properties concerning two functionals,

On a manifold M with a Weyl structure ([g], D}, a choice of a metric
g in [g] induces a l-form w from the equation Dg = w ® g. Under a
conformal change g — f2g, we have w — w + 2dIn(f). So ([g], D) may
well be called closed if dw = 0 and ezact if w is exact. If ([g], D} is exact,
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then D is the Levi-Civita connection of some metric in [g] and if closed,
then D is locally a Levi-Civita connection of a metric. We will simply
say that a structure ([g], D) is a metric or locally conformally a metric
when it is exact or closed, respectively.

Any one-form w together with the Levi-Civita connection VY of a
metric ¢ determines a torsion-free connection D by DxY = VIxY —
Lw(X)Y +w(Y)X — g(X,Y)w), which preserves [g], where w¥ is the
dual vector field to w with respect to g.

An important fact crucial to this paper is that a Weyl structure on a
compact manifold has a unique, up to homothety, metric (to be called
the Gauduchon metric) in the conformal class such that the associated
1-form w is co-closed (5], i.e. dw =0.

From above discussion we may identify a Weyl structure ([g], D) with
a pair {g,w) of a metric g of unit volume and its co-closed 1-form w.

One can define various curvature tensors of a Weyl structure ([g], D}
similarly to a Riemannian metric. The curvature RP can be defined
. RRyZ = Dixy1Z — [Dx,Dy]Z, for X,Y,Z € TM. And the Ricci
curvature r7 is defined as r?(X,Y) = g(RE (Y, e;) for a metric g € [g]
and g-orthonormal frame ¢;, i = 1,2, ..., n. This definition is well defined
independent of the choice of a metric in [g] but 7P is not necessarily
symmetric. The conformal scalar curvature s¥ is defined as the trace of
D with respect to [g]. So s? is so-called of conformal weight —2, which

means that if one denotes the trace of rP with respect to g by 35 , then

3?2 0o = f ‘255’ holds. These curvature notations follow the convention
of current Weyl geometry such as in [7, 11], but it should be clear that
rP and s depend also on [g], not only on D.

From now on we will consider only 4-dimensional closed smooth man-
ifolds. We denote the symmetric part of a 2-tensor ¢ by S(¢) and the
trace-free part of a symmetric 2-tensor 1 by Sp(%). Letr, s, 2 := r—%sg,
W and dv denote respectively the Ricci, scalar, trace-free Ricci, Weyl
curvature tensor and volume form of a metric g.

Recall that there is a decomposition of Riemannian curvature tensor

[3];

1
g0+ -z20g+W,

(2.1) R=_. 5

Y

where for 2-tensors « and g, the Kulkarni-Nomizu product o ® g is the
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4-tensor
a®g(z,y,2,t) = oz, 2)g(y, t) + aly, t)g(z, 2)
— afz, t)g(y, 2) — oy, 2)g(, ).
For a given metric g in [g], its associated 1-form w and Levi-Civita

connection V, the curvature tensor R of ([g], D) can be similarly de-
composed as follows [11];

1

1 1 1
(2.2) RD=W+§SO(TD)®Q+—ngG)g—i—(Zde)g—i-2

2477
If g is a Gauduchon mefric, the following holds;

dw ® g).

S(P) = rg + 3 (W ® w — wf?g + 29w — dw),
(2.3) :

3
D 2
Sg —sg—§|w| .

For the rest of this section we shall explain definitions and some prop-
erties of functionals and critical points.

We shall call a functional F Riemannian [or Weyl if it is defined
on a (sub)space of Riemannian metrics [or Weyl structures] and invari-
ant with respect to the action of diffeomorphism group of M. Here
a diffeomorphism acts on a Weyl structure by pull-back. For such a
functional F we say in this paper that a smooth metric [or a smooth
Weyl structure] {g,w) is a critical point of F functional if it satisfies
(F(ge,w:)) (@) = 0 for any C™ curve of metrics [or Weyl structures|
(g¢,wt) such that (go,wo) = (g,w)

Recall the following two functionals defined on the space M; of all
smooth Riemannian metrics with unit volume on M. The first one is
called the total scalar curvature functional and the second the squared
L? norm functional of scalar curvature.

(2.4) Sta) = [ sedo,

(2.5) Ss(g) = fM (55)2dv.

The critical points of these two functionals are well known [3];
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PROPOSITION 2.1. For a metric g of unit volume on a 4-dimensional
closed manifold,

(1) g is S-critical if and only if it is an Einstein metric.
(2) g is Ss-critical if and only if it is either an Einstein metric or has
zero scalar curvature.

3. Total conformal scalar curvature functional

We are going to define a generalization of the total scalar curvature
functional (2.4) on the space of all Weyl structures on a smooth closed
4-manifold M. The problem is that [ M sPdv appears to be not well
defined because under the conformal change of metric, g > f2g, s”
and the volume form dv changes to f~2s” and f4dv respectively. But
as explained in section 2 we may identify the space of Weyl structures
([g}, D), which we denote by W,, with W := {{g,w)|éw = 0} which is a
subset of M; x Q!, where 2! is the space of all smooth one-forms on
M.

Then we can define f M sPdv on W, which we shall call the total
conformal scalar curvature functional and denote by S¥. Note that the
total scalar curvature functional played an important role in the study
of Riemannian functionals [3].

To understand the critical points of Weyl functionals we should con-
sider a one-parameter family of Weyl structures (g¢,w;). Let % Gilo =
¢'(0) = h and Luyl, = w'(0) = 5. As é,w, = 0, we have a constraint
equation for h and . We dencte by trh the trace of h with respect to g.

LEMMA 3.1. The infinitesimal deformation (h,n) at a Weyl structure
{g,w) tangent to a one-parameter family of Weyl structures satisfies the
following;

(3.1) So{m + hw) + %(trh)w} =0.

Proof. For the computation we may take a local orientation and the
corresponding Hodge star operator. The equation dywy = —#;d*ywy =0
is equivalent to d *; w, = 0, where #; is the Hodge star operator of g;.
Taking derivative with respect to ¢ gives d(x;)jwo+d*en = 0. To compute
(*¢), let @1, ¢2 each be any one-form. From ¢1 A x;da = (b1, da)idvy
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where (-,-); is the pointwise inner product with respect to g:, we get

h
81\ (s2)ob2 = (61, S2)ilodvo + (61, 62)o g e

= {A(61,92) + (b1, 62)0 Yy

= (¢1,h(p2) + %}E@)od’vo

= gy Aofhlg) + 5ol

So, (*)hw = *o{R(w) + L52w}. We get d*o {h(w) + Ew+n} =0,
which implies (3.1). This completes the proof. C

Now we compute the derivative of S¥ functional as a function defined
on a Banach manifold, which will be explained below in section 4. We
denote by {-, ) the L? inner product.

LEMMA 3.2. 8% is differentiable and the derivative is as follows;
wy’ 1 3
(S )(g,w) (h" n) = (ESDg -7 h) - E(w, h(tb’)) - 3(&), 'n),

where (h,n) satisfies {3.1).
Proof. We use (2.3) and a formula from [1, p. 120] to compute

(sPY () = sh(h) ~ (s ®w) ~ dg(w )

= Altr(R)) + 5(5h) — glh, ) ~ gg(h, w ®w) — 3g(w, 7).

Then we get
, trh
(Y gun (o) = [ (Pydoy + [ 525,
7 M Mo 2
3
=—<fr,h>ﬁ-5 <hw®w>-3<wn>
1
+ 3 <sPg h>
1 p 3
= <38 g—r,h)-»é <w,hlw) > -3 <w,n>.
This completes the proof. ' | O

Now we prove
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PROPOSITION 3.3. A Weyl structure (g,w) on a 4-dimensional closed
smooth manifold M is critical with respect to the total conformal scalar
curvature functional if and only if it is an Einstein metric.

REMARK 3.1. In other words, on W there exists no critical Weyl
structures away from the subspace of Riemannian metrics, and Einstein
metrics are actually critical with respect to &, not just with respect to
(2.4).

Proof of Proposition 3.3. As we defined the functional on W, any
metric g of a Weyl structure (g,w) is Gauduchon. So one can argue
directly from (2.3) to see that a S*-critical structure is a metric. But
this would not work for most other functionals. So to provide a prototype
of argument to be used later, we will prove using Lemma 3.2.

Suppose that a structure (g,w) is critical with respect to the total
conformal scalar curvature functional. We consider the following one
parameter family of Weyl structures (g;,w:) = (g,w + tw). Then we
get from above lemma —3 < w,w >= 0. So, w = 0. Now this structure
(9,0}, which is a Riemannian metric, is a critical point of the (restricted)
total scalar curvature functional {2.4). So it must be an Einstein metric
from Proposition 2.1 (1). Conversely, any Einstein metric {g,0) of unit
volume can be checked to be S™-critical by similar argument as in [3,
Theorem 4.21}. This finishes the proof. a

REMARK 3.2, In this paper we mainly discuss on a 4-manifold. How-
ever, the same argument should be useful in other dimensions, too.

4. The space of Weyl structures as a Banach manifold

As illustrated in the proof of Proposition 3.3, finding an actual de-
formation (g;,w;) to a given infinitesimal deformation (h,n) is necessary
in characterizing critical structures. We can find a deformation to the
desired direction in a few practical cases, but here we prefer to explain
concretely the Banach manifold structure of W for future study of Weyl
functionals. Then we shall see that for any vector (h,n) € T(, .\ W, there
exist a smooth curve tangent to it. One can find in [3, Chap. 4] how
Banach space — or other infinite dimensional function spaces — theory
plays an essential role in the study of Riemannian functionals.
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Denote by WF?(AM,) and W5?(Q') the Banach space of W*? Rie-
mannian metrics of unit volume and 1-forms on M, respectively. We de-
fine below a map 7 from WE+27 (M ) x W P (Q1) to the space WH—1:P(T)
of WP functions f on M satisfying | ar fdv = 0, where £ is a large
natural number and p > 2. Set 7(g,w) = d,w. We shall explain that
7~ 1(0) is a smooth Banach submanifold and so that for any element
(h,7) in the kernel of the differential, ker(dm), there exists a smooth
curve in 7~ 1(0) tangent to it. The argument follows a standard way in
nonlinear geometric analysis.

First we show
LEMMA 4.1. The differential dm, ., Is surjective at any point (g, w).

Proof. As done in the proof of Lemma 3.1, we take a local orientation
in order to use Hodge star operator. Then dmry ,\(h,n) = =" odow —
xodox’w—xodox*n. In the proof of Lemma 3.1, we computed for 1-form
w that (%, )jw = *g(h{w) + @w}. Note that (*;)ow consists of linear
terms in h. Similar formula holds for 4-forms so that *' o d o %w also has
only A-linear terms.

Then, dmg.)(h,7) = h-linear terms + 7. This implies that drg .,
is surjective at any (g,w). This finishes the proof. O

Now dm is not a Fredholm operator but still we can find easily a
family of right inverses. Using elliptic regularity, define for each (g,w) €
WHZP(AM1) x WEP(QD), a map

Plow) s WE=L2(Tgy — WEFZP(AM, ) x WEP(Q1)

by P« (f) = (g,w + dGf), where G is Green’s function (operator)
of g. The map P¥+) is smooth and its differential at 0 is simply
dP9) (k) = (0,dGk) for any function k € TyW*~1P(T). Tt holds
that

w0 P (f) = w(g,w +dGf) = §y(w + dGf) = f.

So the differential satisfy dn(g . © dple) (0y = id on the tangent space
ToWE=LP(I), ie. dP+) (o) is a right inverse of dm(, .-

The rest of Banach space argument is standard; with this simple
right inverse at each (g,w) € m~1(0) one can conclude from the infinite
dimensional implicit function theorem, see for instance [1], that 7= (0)
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is an infinite dimensional Banach submanifold or, more directly, one can
check similarly as in [9, Theorem 3.3.4] that for each (h,7) in the kernel
of dmy., there exist a suitably smooth (at least C?) curve tangent to
(h,n). We summarize;

PROPOSITION 4.2. W has a smooth (W*? for any large k) Banach
manifold structure and for any element (h,n) in each tangent space
Tig.:)W, there exists a smooth curve tangent to it.

Note that (g,w) is critical with respect to a functional F if and only if
for any C*° curve (gs,w:) in W, {F(gi,w;)} (0) = 0. But note that this
definition is not affected even if we replace C°° by C?. Therefore, we do
not really need to get a C*° curve {(g¢,w;). For us, some large integer &
would be enough to use the Sobolev embedding W*? C C2.

REMARK 4.1. For the purpose of obtaining C'° curves, one could
have described the space of Weyl structures as a smooth tame Frechet
space or ILH space — inverse limit of Hilbert space. The choice of our
right inverses as above would work it through.

5. Generalization of the squared L? norm functional of scalar
curvature

In this section we study on some generalization of the squared L?
norm functional of scalar curvature. One candidate arises immediately;
] M(sD )2dv. This functional is well defined on the original space of Weyl
structures Wy and we do not need to use the identification of W and
W) in discussing its critical points. For computational convenience, we
still prefer the W space description and keep using (g,w) rather than
(Ig], D).

But we shall discuss not only [,,(s”)?dv but also the following func-
tional,

Ss¥(g,w) = f (sP)2 + 18|dwl? dv,
M

where |dw|? = Ziq(dwij)g for g-orthonormal frame e, ..., e4.

The reason why we consider this as a generalization of (2.5) is as
follows; consider the full Weyl curvature functional [, |R”|%dv, where
RP is considered as a (3, 1)-tensor and |- |} is the norm induced by g on



560 Jongsu Kim

(3,1)-tensors. This is well defined on Wjy. If we express this functional
in terms of other quadratic terms, it becomes from (2.2)

1

IRP|Zdv == [ (sP)? + 18|dw|? dv
® 6
M M

(5.1)
T'D 2 2 )
+/2|SO( )l +/M4|W| dv

Comparing this with the corresponding expression in Riemannian cur-
vature integrals

1
/ |R|%dv = —f sgdv+f2|z|2+[ 4|W |2 dv,
M 6 M M

we may regard the first term on the right hand side of (5.1) as a gener-
alization of f,, s?dv.

As functionals defined on a Banach manifold, Ss" and other quadratic
integrals may have their derivatives, which we compute now. Note that
these derivatives should coincide with directional derivatives. First we
do for Ss" = [, (s7)dw.

LEMMA 5.1. The functional Ss' is differentiable and the derivative
at (g,w) is as follows:

(85" ) gy (hnm) = {S5” (g1, w) Y (0)
= (—6sPw, ) + (2Vds? + 2(A,s7)g

+ %(SD)2g —25Pr, - 3sPw@w,h),

where (h,n) satisfies (3.1).

Proof. One may use the proof of Lemma 3.2 to compute

Eyulbim =3 [P +2 [ PPy i o

Next, we also compute the derivative of the additional curvature;
A(g,0) 1= oy ldl?d,
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LEMMA 5.2. The following holds:
‘ 1 R
(A") gy (Bsm) = (; ldwt?g — dw o duw, h) + (2d*dw, )
(g:w) 9

where (h,n) satisfies (3. 1) and for g-orthonormal frame e;,1 = 1,...,4,
(dw o dw)i; = (dw)ix(dw)ky

Proof. We compute from |dw|® = 3, _, ., 67" (dw)ix(dw); for some
coordinates to get

(Idw?)

(g,w)

(h'a ??) = 2(dwa dn)g - (dw o dwa h')g

Therefore,

(A9, oy (B / deo 2t (h
n / (2o, dy), — (de o dav, B, Yo

— (Hdula.h) — (oo dn by + (2. O

So, combining Lemmas 5.1 and 5.2, we have the formula for the de-
rivative of Ss%.

LeMmMma 5.3. The following holds:
(85™) gy (ha) = (—65Pw + 36d"dw,n) + (2Vds® + 2(A,57)g
1
+ §(sD)Qg —2sPr, — 3sPw @ w,h)
+ (9|dw|*g — 18dw o dw, k)

where (h,n) satisfies (3.1).

From this lemma we get;

THEOREM 5.4. An §s“-critical Weyl structure (g,w) on a closed
smooth 4-manifold M is closed, i.e. w is a harmonic 1-form.

Suppose that, moreover, s is either non-positive or non-negative,
but nonzero somewhere. Then, (g,w) is either an Einstein metric or a
metric with zero scalar curvature.
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Proof. Suppose (g,w) is critical with respect to the Ss” functional.
We consider any one-parameter deformation (g:,w;) of (g,w) such that
(gh,wh} = (h,n) = (0,w). From above lemma we get Jar 36]dw|? —
65 w|?dv = 0.

Next, consider any one-parameter deformation such that (h,n) =
(g,0). Again from above lemma,

f 6AsY + 2(sP)? — 2575 — 3sP|w|? + 72|dw|*dv = 0.
M

From (2.3), above reduces to [, —6s”|w|* + 72|dw|?dv = 0. So we get
dw = 0, which proves the first half of theorem, and [, s”|w[*dv = 0.
If s is either non-positive or non-negative, but nonzero somewhere,
then from [, s”|w|?dv = 0 and the unique continuation theorem for
harmonic forms, see Remark 5.1 below, we get w = 0. By proposition
2.1 (2), (g,w) is either an Einstein metric or a metric with zero scalar
curvature. This finishes the proof of theorem. d

REMARK 5.1. In the proof of above theorem, we need the following
weak unique continuation Theorem of Aronszajn [2]; Let L be a second
order elliptic operator with C' coefficients, for large I. Suppose Lu =0
on a domain D and « = 0 on a nonempty open subset of ). Thenu =0
on D,

From Theorem 5.4, the study of Ss"-critical Weyl structures has to
do with the first cohomology of the manifold. In particular, when there
is no harmonic 1-form on a manifold, we have

COROLLARY 5.5. If the first Betti number of M vanishes, then every
Ss™-critical Weyl structure is either an Einstein metric or a metric with
zero scalar curvature.

Now we treat Ss' -critical structures. The proof is similar to that of
theorem 5.4.

PROPOSITION 5.6. An Ss' -critical Weyl structure (g,w) on a closed
smooth d-manifold M satisfies that [, s”|w|*dv = 0.
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Suppose that, moreover, s” is either non-positive or non-negative,

but nonzero somewhere. Then, (g,w) is either an Einstein metric or a
metric with zero scalar curvature.

REMARK 5.2, Theorem 5.4 and Proposition 5.6 is an extension of
Proposition 2.1 (2) to Weyl geometry. It follows from Theorem 5.4 that
there can be only one (family of) §s“-critical Einstein-Weyl structures
which are not {global} metrics [7]. See Example 5.1 below.

EXAMPLE 5.1. On 5! x 83, let g; be the product of the metric 2d#%on
St = {exp(i0)|8 € [0,2m)} and the canonical metric g..n, on S* with
sectional curvature one. Let w; be the 1-form 2t¢df, which is harmonic
with respect to g;. For each ¢, (g;,w;) is an Einstein-Weyl structure with
sPt = 0. Any closed non-exact 4-dimensional Einstein-Weyl structure
is locally equivalent to this structure.

REMARK 5.3. From Lemma 5.2, a Weyl structures (g,w) is critical
with respect to the 4% functional if and only if it is closed.
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