References
- Nagoya Math.J. v.134 Criteria for recurrence and transience of semistable processes G.S.Choi
- Bull.Korean.Math.Soc. v.37 Representation of operator semi-stable distributions
- Proc.Japan Acad. v.71 Ser A Recurrence and transience of operator semi-stable processes G.S.Choi;K.Sato
- Teor.Verojatnost.i Primenen v.31 Operator-semistable distributions on Rd, V.Chorny
- English translation, Theory Prob.Appl. v.31 Operator-semistable distributions on Rd V.Chorny
- Studia Math. v.61 Semi-stable probability measures on RN R.Jajte
- Operator-Limit Distributions in Probability Theory Z.J.Jurek;J.D.Mason
- Teor.Verojatnost.Primenen v.17 On the extension of the class of stable distributions V.M.Kruglov
- English translation, Theory Probab.Appl. v.17 On the extension of the class of stable distributions V.M.Kruglov
- Theorie de l'addition des variables aleatoires(2e ed.) P.Levy
- Collop.Math. v.45 Operator semi-stable probability measures on RN A.Luczak
- Corrigenda v.52 Operator semi-stable probability measures on RN A.Luczak
- Tokyo J.Math. v.23 Completely operator semi-selfdecomposable distributions M.Maejima;K.Sato;T.Watanabe
- Technical Report Series no.54 Lectures on multivariate infinitely divisible distributions and operator-stable processes K.Sato
- J.Multivar.Anal. v.22 Strictly operator-stable distributions
- Nagoya.Math.J. v.97 Completely operator-selfdecomposable distributions and operator-stable distributions K.Sato;M.Yamazato
- Trans.Amer.Math.Soc. v.136 Operator-stable probability distributions on vector groups M.Sharpe
- Ann.Inst.Statist.Math. v.22 On the domain of partial attraction of semi-stable distributions R.Shimizu
- Nagoya Math.J. v.132 Oscillation of modes of some semi-stable Levy processes T.Watanabe