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CONTINUOUS MULTISCALE ANALYSIS
ON THE HEISENBERG GROUP

JiaNxun HE

ABSTRACT. In this paper, we study the continuous wavelet trans-
form on the Heisenberg group H", and describe the related con-
tinuous multiscale analysis. By using the wavelet packet transform
we obtain a reconstruction formula on L2 (EH%).

1. Introduction

Wavelet analysis has many applications in pure and applied math-
ematics. In [3], H. G. Stark studied the continuous wavelet transform
and continuous multiscale analysis on the space L?*(R). It is a useful
tool for analyzing signal. When one considers the problems of radial
function space on Heisenberg group, the fundamental manifold can be
regarded as the Laguerre hypergroup K = [0, +00) x R. M. M. Nessibi
and K. Triméche [2] gave the generalized wavelet transform on the La-
guerre hypergroup K. By using generalized wavelet they obtained the
inversion formula of the Radon transform. In this paper, we deal with
the continuous multiscale analysis and wavelet packet on the Heisenberg
group H". The properties of the Radon transform on H" were exploited
by R. 8. Strichartz [5]. It is believed that the wavelet transform in this
paper can be applied to discuss the Radon transform and others on the
Heisenberg group. In the sequel we will consider this problem.

This paper is organized as follows. In this section we summarize the
main results of harmonic analysis on the Heisenberg group H”. We
will discuss the continuous wavelet transform on L?{(H") in the second
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section. The continuous multiscale analysis will be studied in the third
section. And in the last section we shall give a reconstruction formula
for wavelet packet transform on LZ(H").

Let H™ be the (2n + 1)-dimensional Heisenberg group H” = C" x R
with the multiplication law

(1.1) (z, )z 1) = (2 + 2, t +t + 2Imz2).

Let SU(n+1,1) = ANK be the Iwasawa decomposition, where

14 t

I, 12 —12
N=<(n(zst)=[ 1 1- lzlz_it ‘z‘zz_it :2€ChteRy,
iz _ Iz 22—it 1+ z 22—it
I, 0 0

A

a(()=| 0 cosh{ sinh{ |:(€R;,
0 sinh{ cosh(

A 0
K={(O D) :AEU(n—i—l),detA-D:l},

z! denotes the transpose of z. Consider the semi-direct product P of A
and N which is given as follows:

P={(ztp): (2t} e H",pe Rt}

P can be regarded as a solvable subgroup of SU(n+1,1) equipped with
the group law:

(1.2) (2,t,0)(2, ¥, p') = (2 + /p2', t + pt' + 2¢/plmz?’, pp').

di(z,t,p) = ‘li,—df:jgﬂ and du,(z,t,p) = dz—‘f‘iﬂ are the left and right in-
variant measures of P respectively. The square integrable unitary rep-
resentation of P on L2(H") is defined by

_%f(z’ —z t—t- ZImz?)
VP p '

Let Z, ={0,1,2--- }, @ = (a1, 02, - an) € (Z1)". The Fock space H
is the space of holomorphic functions F' on C” such that

(13) U(z'itﬂ p)f(z’,t') =p

1718 = (2)" [ IFQFePdt < o0

m
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{Ea(z) = %‘I}—a- t o € (Z4)"} is an orthonormal basis of the Hilbert
space H. For A € R, A # 0, let m; be the Bargmann-Fock representation

of H”® which acts on H by

e—iAt—A|z|2+2\/§CEF(C _ \/Xz), if A>0,

(1.4) “(z’t)F(C):{e—w+»\tz22\/Nc-zp(g+ W), i A<o.

The group Fourier transform of a function f € L'(H") is defined by

(1.5) FOY = | Flz,t)ma(z, t)dzdt.

Hn

For f,g € L?(H"), the Parseval formula is

n—1 +o0 "
18 (fomn =y [ (F0FW) A

where G(A)* denotes the adjoint of g(A). Let | - ||zs be the Hilbert-
Schmidt norm of operators, then Plancherel formula is given by

271.—1 +eo %
0D Ul = { o [ T}

And the inversion of the Fourier transform is

n—1

(1.8) fzt) =S /_ :0 tr (m(z,t)*f()\)) |AI"dA.

The further details can be looked up in the references [1] and [4].

2. Continuous wavelet transform

For h € L? (H”), h # 0, if it satisfies the admissibility condition:

o dzdidp

(21) f | h, U Z t P)h)Lﬁ(H")| n+2 < 400,

||h||L2(Hn

then we say that h is an admissible wavelet. We now discuss the admis-
sibility condition. Since

f (h, U2, t, )Y 12 1y T (2, )zt = p™5 R(AR(pA)",
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by the Plancherel formula, we have

dzdtdp
/};'(haU(zut:p)h‘>L2(H")|2 pn+2

271—1 +oo +oo dp
= h A APdA
2 [ ([ RoRe s ) £

— 0

2 [T whov oo R £

— 00

We note that

tr (RO BAR(N B(pN)) = (0N B(oA) Ea, RO B B

[+

We now assume that for any o, € (Z,)",

([ Honion L., b, )

=<f0+oo (pA)* h(ﬂ/\)dp EﬁvEﬁ> )

H
and we write that Cj, = (f;° A R(p ) E., E,)n. Then we obtain

dzdtdp
LUt o) e P

gn— 1 +oo -to00 dp
) ([ SRR 0RO B )

gn-1 +oo +OOA N N o~
2= [ S RN RN L R RO B A A

[23

= (0 by BN ) (B [ whorhoara)
by

Write R~ = —R™. Then we have the following:
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THEOREM 1. Let h € L*(H™), 0 = + or —. Then h is an admissible
wavelet if there exists a constant C, € R, such that for any o € (Zy )",

(2.2) Ch = < fR ] E(A)*E(A)%EQ,EQ>H

We now give some examples of admissible wavelets. Let v > —1,m €
zZ,, LSTL;) the Laguerre polynomials of degree m and order v defined by

v - m+v (_3)# 1 5 —v d ™ —s _m+v
L’(“)(S)zz(muv) i = qe’s (&;) (%™},

p=0

They satisfy the following orthogonal relations:

+o0
(2.3) f e 55" LU ()L (s)ds = T(v + 1) (” :;m) Sk
0

([6]). Let p,, be the even function defined by

(V —:nm) (28)2:‘216_3111(,:)(8), seRT.

2l
N

Pm(s) =T(r +1)”

Define a wavelet function A,,{z,t) in terms of the Fourier transform by
Bm{A) = pm(A)I, where I denotes the identity operator. Clearly, for
g=+4or—, meZy, ac (Zy )", from (2.3} it is easy to compute that

~ =~ dA
C =<f (0 R0 1 By Ba ), = 1.
o= (] R BN B B
Hence k., is an admissible wavelet. The explicit expression of hp,(z,t)
can be obtained from the inversion formula (1.8). Let AW denote the
set of admissible wavelets. Then for h € AW, the continuous wavelet
transform is defined by

(24) (th)(zvtap) = (f: U(Zrtsp)h)Lz(H“)'
Similarly as in the proof of Theorem 1, we have
(2.5) (Wi, Whg)r2ep,au) = Crlf, 9) L2 an)-

And the following reconstruction formula holds in the weak sense:

+o0 P
26 1) = [ [ Wpe Ut om0 T
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3. Continuous multiscale analysis

A continuous multiscale analysis on H” is defined by a net {V,} ,cp+
of closed subspaces of L?(H"} satisfying

1} (inclusion property) If p1 < po, then V,, C V,,,.

2) limV, = L*(H"), and _lim V, = {0}.

3) (rescaling property) f € V,, if and only if fa € V,,, where
o2

P11 M
2 Z,t = —Z, —t}.
fglzh( )= [( 2 oo )

4) (translation invariance of the subspaces V) If f € V,,, then for any
(,t)e H* f(z— 2, t —t' — 2Imzz’') €V,
For any p € R™, we define the subset P, of P by

(3.1) P,={(z,t,0"): (z,t) e H",p' € [p,+00)}.

Let © denocte any measurable subset of R— {0} whose Lebesgue measure
vanishes. Set

(32) V,={f e L*H"): (f,U(z,t,p ) 12u~) =0 ae. on P —P,}.
Then we get

LEMMA 1. f € V, if and only if suppf N {ﬁ;suppﬁ} = © for all
P €(0,p).

Proof. We note that

[ UGtz )zt = 5 FORGN)
It is easy to see that
(f! U(Z, t, p,)h)Lz(H") =0

a.e. on P — P, if and only if f()\)ﬁ(p’ A)* = 0 almost everywhere for
A € R~ {0}. This is equivalent to the condition that suppfnN {;l,supph}
is of measure zero, namely

(3.3) suppf N {%suppﬁ} =0, forall p’ € (0,p).

This completes the proof. O
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THEOREM 2. {V,},cr+ Is a continuous multiscale analysis if and
only if there exists n > 0, such that [-n,n] Nsupph = ©.

Proof. Let {f,} be some Cauchy sequence in V, which converges to
f € L?(H"} in the norm sense. Then

(34) (thn)(z,t,p') = (fn:U(zrt:p’)LS‘(H") - (f,U(Z,t,P’)h>L2(Hn)-

Since (Wy fr)(z,t,0') =0a.e. on P—P,, we know that (W, f}(z,t,0") =
0 ae on P—P, andso f € V,. Thus V, is closed. We note that

65 gt = (F0()/ 20 20 Zo)n)

and
(T(z’,t")fr U(Z, t, P)h>L2(H“)
={f,U(z + 2, t +t' + 2Imz7, p)h} 12 (mn)-

where T(z e flz,8) = f(z—2',t—t'—2Imz2’). Then f € V,, if and only
if f_]. €V, and f €V, if and only if T(z/,t')f € V,. The necessary

condmon of this theorem can be proved by the similar way as that of
Theorem 3.2 in {4], and we know that there exists n > 0, such that
(3.7) supph C {AeR: A > n}

Let 3 be defined as the largest positive number 5 such that (3.7) holds,
here we also call that 8 is the lower limit frequency. Hence for all
p € (0,+00),

(3.6)

U (ésuppﬁ) ={AeR:|A> g}.

O<a<p
From Lemma 1 we know that f € V, if and only if
~ 1 -~
suppf N ( U asupph) =0,
O<a<p
Thus we have
suppf C{AeR:|Al < g}

And we obtain

- _ 72 n : —
(3.8) limV, = L*H") and lim V,={0}.

The proof of Theorem 2 is complete.
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4. Wavelet packet

Let Z denote the set of all integers, and let {p;};cz be a strictly
decreasing sequence such that

lim p;=0 and lim p; = +oo.
l—+o0 {——o0

For h € AW, A € R — {0}. Since for @ € (Z;)",
{G(pA)*§(pA) Ea; Ea)r = ((pA)Ea, §(pA) Ea)n 2 0,
it is not difficult to see that fp‘i:l E(pA)*?L(pA)%E is a positive linear

bounded operator on Fock space H. Assume that for all o, 5 € (Z5)",

P — dp P -~ dp
h(pAY R(pN)—=Ey, B, ) = h{pA)Y h(pA\) == Eg, .
< (PA) hipA)= >H <fp+ (PA)"h(pA)— " Fg Eﬁ>H

Pl+1

Define

/ ) ’ﬁ(pA)*E(pA)d—j} .

P+l

(4.1) H'(\) = {

Clearly, H'()\) is a self-conjugate operator. Let H'(z/,t) € L*(H"),
whose Fourier transform is H'()). Write

H{, 5 =H'(Z - z,t' —t - 2Imz'Z).
Then for f,g € L*(H"), we get

!
L'ﬂ (f, H(zst)>L2(H") <g, Hézst’)>L2(H")d2dt

n—1 . N R
=25 [ e @ TS B DA

S [T B BB G0 T Bl

ae(Zy)n

_ [N o dp gn-—1 " . "
—(( [ Aoy h(p/\);EmEam) (5 [ n@orFonirar).

Pit1
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Moreover, we have

+00
Z / f: (= t))Lz(H”)( H(z t))Lz(Hn)dZdt

I=—00
+oo . dp
—{ f BN BN L B Eabra(f,0) 2000
= Cp{f,9)L2(an)-
Especially,
“+oo
4wy % / [, HY ) z2qeam|2dzdt = Coll F1Z 2 e
{=—o00C

Here we call {H'};cz a wavelet packet on H". Let L2(Z x H") be the
family of measurable functions G on Z x H" satisfying

+oo
Z/ G, (z,8)*dzdt < +c0.

{=—00

For f € L?(H™), the wavelet packet transform Wy f is defined by
(43) (WHf)('!a (Z, t)) = (f: HEz,t))Lz(H")-

Then (Wy f){(1,(2,t)} € L*(Z x H*). From the above discussion and
{2.6) we obtain the following reconstruction formula:

THEOREM 3. Let {Hfz,s)}lez be a wavelet packet on H". Then for
all f € L2(H™),

+oo
a8 SEO=01 S [ (Wap (e 0), ydsat.

l=—00

Let

; \ % ! Pi
= (ZHJ’(A)z) = (Z/ h(p)\ p)\)—)

Then for all f € L(H™), we have

(45)  f(,¢) =07 lim /H (Waf)(0. (2, )M, dedt.
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