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SOME QUASILINEAR HYPERBOLIC
EQUATIONS AND YOSIDA APPROXIMATIONS

JoNG YEOUL PARK, IL Hyo JUNG, AND YONG HAN KANG

ABSTRACT. We show the existence and uniqueness of solutions for
the Cauchy problem for nonlinear evolution equations with the
strong damping: v

w(t) — M{IVu(t)|*) du(t) — 80u'(t) = f(1).

As an application, a Kirchhoff model with viscosity is given.

1. Introduction

We shall be concerned with abstract Cauchy initial value problems in
a Hilbert space H for nonlinear evolution equations of Kirchhoff type

W(t) — M(Vu(t)2) Auft) - 620 (1) = £(1), t € (0,T),

(CP) u(0) = up, u'(0) = uy,
where the function M (-}, which satisfles convenient assumptions, is
given, k is a fixed positive integer, § > 0 is a constant and T > 0 is
arbitrary and fixed.
The motivation which the problem {CP) has attracted the attention of
several researchers(see [1-4, 6-11] and references therein) is of its intimate
connection with mathematical physics for describing small amplitude
vibrations of an elastic string(see [4]).

When 6 = 0, Dickey[2] and PohoZaev[11] have shown the exis-
tence and uniqueness of local solutions to the problem (CP) by using

Received April 1, 2000.

2000 Mathematics Subject Classification: 35A05, 35L70.

Key words and phrases: Kirchhoff model, Yosida approximations, quasilinear hy-
perbolic equations.

This work was supported by the Brain Korea 21 Project.



506 Jong Yeoul Park, Il Hyo Jung, and Yong Han Kang

a Galerkin procedure, respectively(see also [6]). Cavalcanti et al. [1]
have shown the existence of global solutions and exponential decay to
the problem (CP) by using a Galerkin procedure(see also |7, §]).

The purpose of this paper is to show the existence and uniqueness of

solutions to the problem (CP) without smallness condition of the initial
data and under the presence of the strong damping term éAw(¢)(5 > 0).
The proof of the solvability of the problem (CP) is carried out by the
Yosida approximation method(cf. [4]). Note that this technique for the
proof of the existence theorem plays a central role in deriving some a
priori estimates of solutions to the problem (CP).
The contents of this paper are as follows. In Section 2, we give the ab-
stract setting and main results. In Section 3, we mention some useful
facts about Yosida approximation of a nonnegative selfadjoint opera-
tor and give the proof of our main results. Section 4 is devoted to an
application for our abstract results.

2. Preliminaries

Let H be a real Hilbert space with inner product {-,-) and norm
| - |. Assume that A4 is a densely defined nonnegative selfadjoint linear
operator in H. Then the square root of A, A'/? may be computed via the
elementary spectral calculus and is known to be a nonnegative selfadjoint
operator itself(see [12]) and also D{A) C D(AY?), where D{A%) is the
domain of A%(a = 1, %) Moreover suppose that the injection from
D(AY?) from H is compact. Note that A = —A is a nonnegative
selfadjoint operator with compact resolvent in some Sobolev space.

Generalizing the problem (CP), we now shall consider nonlinear evo-
lution equations of the form:

(2.1) w! (B)-+M(|AY2u(t) ) Au(t) + §Au () = f(¢) in H
(2.2) u(t) € D(A) for any t € [0,T)
(2.3) u(0) = ug € D(A), v/ (0) = u; € D(AYV?),

Throughout what follows we will denote V and W by
V= D(A) and W := D(AY?), respectively.

We assume the following on M(t), and f(¢) :
(A.1) Let M(f) bea C'[0,c0) function satisfying M(t) > mq (mg > 0);
(A.2) fe LY0,T; H).
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For the later use, we set

(2.4) () = [0 " M(s)ds,
(25) B(t) = ¢ [l @) + T4 ()]

Note that by assumption (A.1),
(2.6) M(r) > mpr on [0,00).

DEFINITION 2.1. A function u(t) : [0,T) — H is called a solution to
the problem (2.1)-(2.3) on [0,7) if
(i) v € L=, T; VI)NBC([0,T); W), v’ € L2(0,T; V)NL>®(0,T;W)N
BC({0,T); H), v"” € L*(0,T; H);
(ii) u satisfies (2.1) on [0,T7;
(iii) 2(0) = 4o and u'(0) = u,.

Here BC([0,T); H} denotes the set of all H-valued bounded continu-

ous functions on {0, T).

3. Global existence and uniqueness result

At first, we mention some useful facts about Yosida approximations
of nonnegative selfadjoint operators.

Define the Yosida approximation Ay of A by
(3.1) Ay=2"YI-Jy)=AJy for A>0,

where Jy = (I+XA)~! and T is the identity on H. Then it is well known
that Jy — T strongly as A — 0 and

Ayvu— Au (A - 0) for uve D(A).
Next we consider the power of degree & of Ay :
(3.2) AY2 = A2 (0> 0),

where J;/ ® = (I + AM)~/2, We obtain several basic properties of the

operators J ;/ ? and A;/ ?(for proof, see [10]).
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LemMA 3.1, Let A > 0. Then
(1) |72 < 1 and | Ay ul < |AY?u| for u € D(AV?) ;
(2) 11432)] < A2
(3) |u-— J:/2u| < A/2AY 2y u € H.
(4) |u— Jiul < AlAu|,u € H.
Here A] is the power of degree -y of Aj.

We next introduce the Bihari-type inequality without proof{see [3]).

LEMMA 3.2. Let F and G be nonnegative continuous functions on
[0, 7] (T > 0). If

[F(6))? < C+ f ' P(s)G(s)ds on [0,T],

then .
F(t) <CY? 4 %f G(s)ds on [0,T],
0

where C is a positive constant.

From now on we shall let A > 0 be any number and let A, be the
Yosida approximation of A.

Approzimate problems
First we consider the approximate problem of the following differential
equation by applying the Yosida approximation :

(33) Wi OFMIA PP Avualt) + sz (t) = £(t),
(34) 'LL,\(O) =ug €V, UI)\(O) =uy € W.

By using the mean value theorem for M (t), we can easily show that the
mapping u — M (|Ai/ 2u|?) Ayu is locally Lipschitz continuous for each
M. Then it is well known that the problem (3.3) and (3.4) has a unique
local approximate solution uy € C1([0,7%); H) on some interval [0, 7))
and moreover, u(¢) is absolutely continuous and (3.3) holds a.e., on
[0,T%) (cf. [4]).

Now we shall see that uy(f) can be extended to [0,7). To see this,
we need a priori estimates for the solution wuy (t).

A priori estimates
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LEMMA 3.3. Let ug € V and wy € W. Then the following inequality
holds on [0,T3) :

5) s {BAORmola i OF 2 ] |41/ (s) Pds } < B3,
€[0, 1

where By is given by
T

(3. Bo=VEEO'? + [ |7(s)lds
0

and my is the constant of assumption (A.2).
Proof. If we multiply (3.3) by 2u/ (), then we obtain a.e. on [0,7)),

SRADP + MIAY s ()2 1AV 2 us (0 + 26143l (1)
20,140

Integrating (3.7) on (0,%),t € [0, 7)), we produce from (2.4)-(2.6) that

(3.7)

A + ol AL Zus (BF +26 f AV, () Pds
(3.8) )
<260) +2 [ 11Ol ()lds

If we set
1/2
PO = [l O+ mo A oo +25 [ 14V eras] ",

then we obtain by (3.8)

4
(3.9) [FOP < 2E(0) + 2 f |F()|F(s)ds.

Therefore, our desired result follows from applying Lemma 3.2 to (3.9).0
We can easily show the extension of a local solution to the whole
interval (0,7) from Lemma 3.3.

Now we shall prove that w,(t) and v/ (¢) are uniformly bounded in V
and W, respectively.

We set By := max{|M(s)] : 0 < s < %‘%} and By := max{|M’(s)} :
0<s< %:}, where By is the constant given by (3.6).
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PROPOSITION 3.1. Let ug € V and u; € W. If f(t) € L*(0,T; W),
then there exists a positive constant M, which does not depend on A
such that

T
sup {|vu@L14Y 0, [ 1A 0Pt} < M.
O

te[0,T)

Proof. If we multiply (3.3) by 2Au) (¢), then we obtain a.e., on [0,T)
(3.10)

{|A”2 LOR + MAY2ur (02 Avun ()2} + 26| Arul (1)
= 2(7(0), Axuh (1)) + [ Arus () M(AY 2 ()

Integrating (3.10) on (0,1), ¢ € [0,T], we have
(3.11)

t
AV ()2 + M(AY 2ur (8P Ayus (6)[? + 20 / | Ayt (s)|%ds
¢ 1/2 1/2
= AV WA ol Aol + 2 [ (Y1), A (5))ds
42 / MY (| AY 25 (5)2) (AY 204 (5), AY 25 (5))] Arua (5) s,
Using the Schwarz inequality, (A.2) and (3.5), we produce by (3.11)
i
A2 () + mol Axua (D) + 26 f | Axad) (5)[2ds
<|A1/2u1|2+Bl|Au0[2+2f LAY? £(5)|| AV %l (s)|ds
(3.12)
2By By 1/2 2
—_— A A d
+ 2 /;| 1201 ()] | Axea (5) Pds

2B.B
< L{ug, w, f, 8) + 2052 f A2, ()] Axua (5)Pdls,

where L(uo,u1, f,6) = [AY?u1]? + Bi|Auol? + [5 14}/ f(s)%ds + 32
Thus, applying Gronwall’s inequality to (3.12) and using Lemma 3.3,
we obtain the desired estimates. a
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PROPOSITION 3.2. Let uy € V and u; € W. Then there exists a
positive constant M,, which does not depend on A such that

i
f (!l (s)ds < My on {0,T).
0

Proof. If we multiply (3.3} by u}(f), then we have a.e. on [0,T)
[ (8)[2 + (M4 2ua () Axua(t) + SAxuA (8) — £ (), 95(8)) = .

Using the Schwarz inequality and integrating over (0,%),t € [0,T), we
obtain,

t t t A
f [ (s)Pds < 2B / | Ayua(s)ds+26 / | Ay (s)Pds+ / 1£()|Pds.
0 1] 0 Q0

Therefore, our result is an immediate consequence of Proposition 3.1.0

Passage to the limit

In this section we establish the uniform convergence of sclutions to
the problem (2.1)-(2.3) on finite intervals of arbitrary length as A — 0.
In what follows we will let {A,,}». be a sequence such that A, > 0 (n € N)
and A, — 0 as n — occ.

LEMMA 3.4. If for any A > 0, ux(-} is a solution to the problem
(3.3) and (3.4), then there exist a subsequence {uy,(-}}n of {ua(-)}
and u(-) € BC([0,T); H) such that

(3.13) uy, ()= u() in C([0,T]; H) as n — oo.

Moreover, there is a subsequence {u, ()}n of {ux,(-)}» and u'(:) €
BC([0,T); H) such that

(3.14) uw, () —d'(-} in C([0,T];H) as n — co.

Hn

Here the convergence is uniform with respect to t € [0, 7).
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Proof. At first we show that for any ¢ € [0,7), {Ji/zu,\(t)})\ is pre-
compact in H. In fact, we have for any t € [0,T),

3 %A (8) = T3 (0)lw

B15) =1L Pl = L (0] + 14 () = A 2w (1)

<) + ()] + |43 P ur ()] + |43 (0],
where A > 0 and g > 0 are arbitrary. From Lemima 3.3 and the definition
of A}/%, (3.15) implies that for any ¢ € [0,T), {J/%us(t)}, is bounded
in W. Thus we can see from the compactness that for any ¢ € {0,7),
{J )1\/ ux(t)} s is precompact in H. Moreover, from (1) of Lemma 3.1 and
(3.5), we can easily observe that {J ;/ ux()}» is equicontinuous. Hence,
applying the Arzela-Ascoli theorem to {Ji/ u A()}a in C([0,T); H), we
can find a subsequence {J;fu,\n(-)},\ and u(-) € BC([0,T); H) such
that
(3.16) Jl/zu,\n(-) —u(-) in C([0,T);H) as n — oo.

Noting that {uy, () — J:£2UAH (t)} < )\1&/2|A}\{12u,\n ()| (see (3) of Lemma

3.1, we can observe that uy_ (-) — «{(-} in C([0, T]; H) as n — oo.
Noting that J;T/lzu’:\n(-) and Aimu,\n () belong to BC([0,1); H), we

can also prove (3.14) in the same way as in the proof of (3.13). O

LEMMA 3.5. Let u(-), {An}n, and {jt, }, be as in Lemma 3.4. Then
u(-) € L=(0,T; V), ¥/(-) € L3(0,T; V), v/'(-) € L=(0,T; W) and

(3.17) Au(t) = weak lim Ay uy, (t) In H,
(3.18) AY24 (1) = weak lim Al/%, (1) in H,
(3.19) A/ (t) = weak llm A (t) in L*(0,T; H),

'Tn’}‘

where {u., (-)}» is a subsequence of {u, (-)}n. Moreover, u(-) €
BC([0, T); W) and

M(|AY2u(t)]?) Au(t)

3.20
(3:20) —weak lm M(|AYZu, (8)]2)Ax, us, (2).
TE— OO L

Here the convergence is uniform with respect to t € {0, 7.



Quasilinear hyperbolic equations and Yosida approximations 513

Proof. We note that A% is weakly closed and D(A?) is dense in H
( = 1,1/2). From Proposition 3.1, we can observe that Ayuy, (-} and
A, () belong to BC([0,T); H).

Thus (3.17), (3.18), and (3.19) follow from (3.13) and (3.14). We also
have

(3.21) | Au(t)] < lim inf | Ay, ux, ()] < M,
|AY 24! (8)] < hm 1nf|Al/2 ()] < My,

fOT | Au'()|%dt < nli_yngoinf'/‘ |Ay, 0l (£)]Pdt < M.
These imply that
u(-) € L0, T; V), 4/ (\) € L20, T; V)u'(-) € L=(0, T; W).
In order to prove (3.20), we first show that u(-) € BC([0,T); W) and
(3.22) A Puy, () = AY?u() in C(0,T); H) as n— oo.
From the definition of Aii ? and using the Schwarz inequality, we observe
that
|AY Py, (8) ~ AV 2u(t))?
= A3 2un (D7 — 2(Au(t), [\ s, () + |4 2u(t)?
= |4} un, (B ~ |AY2u(®) + 2(Aut), u(t) — T3 *un, (£)
< 14 2un, (1) — | A 2u(®)]? + 2 Au®)|[u(t) — 1) s, (2)].
Thus it suffices by (3.16} and (3.21) to show that
(3.23) (A, ur, (t),ur, (t)) — (Au(t),u(t)) in C[0,T] as n — .

Indeed, from (4) of Lemma 3.1 and using the Schwarz inequality, we
have
|(Ax,wa, (8), ur, (£)) — (Au(t), u(t))]
= [(Ax,un, (8) — Ax,u(t), ua, (1))
+ (a, ult), Auy, (t)) — (Au(t), u(t))|
= |(Ax, un, (£),un, () — u(®)) + (Au(l), Jr, u(t) — u(i))
+ (Ax,u(t), ua, (t) — u(?))]
< AnlAu(®)® + (JAx, ur, (O] + [Ax, D) un,, () — u()].
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So (3.23) follows from (3.13) and (3.21). Hence we obtain (3.22) and we

also have
B
AV = lim [AY%uy (1)) < =2
4Put)] = lim 14}, (0] < <,

where By is the constant given in (3.6), that is, u(-) € BC([0,T); W).
Finally, by using the mean value theorem for M(-), our final assertion
immediately follows from (3.5), (3.17), and (3.23). O

We are now in a position to show that u(-), given by Lemma 3.4, is a
solution to the problem (2.1)—(2.3).

PROPOSITION 3.3. Let u(-) and {pn}» be as in Lemma 3.4. Then
uw'(\) € L?(0,T; H) and

w!(t) 4+ M(|AY?u(t)[?) Au(t) + 64/ (t) = f(t) ae in H.

Proof. We can observe that «'(t) is Lipschitz continuous and so is

absolutely continuous. Hence from Proposition 3.2, we can easily show
that u”(t) € L2(0,T; H) exists a.e.. We also see from (3.3), (3.14), and
(3.20) that

(3.24)  f(t) — &u'(t) — M(|AV?u(t)|*) Au(t) = weak lm u, (t).

n—oo H

! t —ayf
Put w,(t) = i () — Uy () on t € [0, T]. Here s(# t) is arbitrary but
fixed on [0,7]. Then clearly, lim wn(t) = u, (s) a.e. on (0,T) and by
u/(t) — u'(s)

t
we obtain by the continuity of (-, ),

virtue of (3.15), lim w,(t) = , uniformly on [0, 7). Hence

(325)  lim (uf, (s),0) = lim (lmwn(t),v) = (u(s),v), v € .
So, our assertion follows from (3.24) and (3.25). O

Uniqueness
We need the following lemma for uniqueness, which is proved in {10].
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LEMMA 3.6. Let u and v be solutions to the problem (2.1)—(2.3).
Ifw(t) € CY[0,T),V) is a solution of

W' (£)+M(|AY?u(t)|?) Aw(t) + SAw' (£) = F(u(t), v(t))
w(0) = 0,w'(0) =0,

where |F(u(t),v(t))| < My|AY2w(t)| for all t € [0,T) and some constant
My >0. Then w(t)=0 fort € [0,T).

From Lemma 3.6, we can easily derive that the solution to the problem
{2.1)-(2.3) is unique.

From lemmas and propositions above, we obtain the following main
result :

THEOREM 3.1. Let all assumptions (A.1) and {A.2) be satisfled and
(uo,u1, f) €V x W x L¥0,T;W). Then there exists a unique solution
u(t) on [0,T] to the problem (2.1)—(2.3).

4. An application for a Kirchhoff model

Let €2 be a bounded domain in R™ with sufficiently smooth bound-
ary 0€). We consider the initial boundary value problem with Dirichlet
boundary conditions of the form

u’(z,t) — (a+ frz IVu(z, t)|*dz) Au(z, t) — 844 (2,1) = f(x,1),

(4.1) r€Q, tel0,T),
(4.2) u(z,t) =0, z € 9Q, t€[0,T),
(4.3) u(z,0) = ug(z), u'(z,0) = wi(z), z €,

where A and V are the Laplacian and the gradient in R™, respectively,
and ¢ and §é are positive constants.
Let H = L*(Q2) be the Hilbert space with inner product (, ) and norm
[{ - ||. Define a linear operator 4 in H by

Au=—Au with D{(A) = H*(Q) N H3(Q).
Here H7Y({1) is the usual Sobolev space of order v and Hj(Q) is the
closure of C§° in HY(2). It is well known that when A = —A, D(A41/2) =
Hj{(), and {|AY?u|| = |{|Vu||,u € D(AY?). By pointwise evaluation
u{z,t) = (u(t))(z), the problem (4.1)-(4.3) can be written in an abstract
form (2.1)-(2.3).

Form Thecrem 2.1, we obtain the following:
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THEOREM 4.1. Let (ug,uy, f) € (H2(Q)NH(Q)) x HE(Q) x L2(0,T;

H}(2)). Then there exists a unique solution u(t) on [0, T) to the problem
(4.1)—(4.3) such that

(2]
3]
(4]

(5]
[6]
7]

(8]

[9]

u € L=(0,T; H*(92) N Hy(2)) N BC([0, T); Ho (),
w' e L2(0,T; H2(Q) N HE () n L>=(0,T; Hy (Q) n BC([0,T); H),
' e L*0,T; H).

References

M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. 5. Prates Filho, and J. A.
Soriano, Eristence and ezponential decay for e Kirchhoff-Carrier model with
wmscosity, J. Math. Anal. Appl. 226 (1998), 40-60.

R. W. Dickey, The initial value problem for a nonlinear semi-infinite string,
Proc. Roy. Soc. Edinburgh 82 (1978), 19-26.

J. Dix and R. Torrején, A quasilinear integrodifferential equation of hyperbolic
type, Diff. Integral BEqns 6 (1993), 431-447.

R. Ikehata and N. Okazawa, Yosida approzimation and nonlinear hyperbolic
equation, Nonlinear Analysis, Theory, Methods & Applications 15(5) (1990),
479-495.

V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability Analysis of Non-
linear Systems, Marcel Dekker, Inc., New York and Basel, 1989.

G. P. Menzala, On clessical solutions of a quasilinear hyperbolic equation, Memdrias

de Matematica da Universidade Federal do Rio de Janeiro (1978).

K. Nishihara and K. Ono, Asymptotic behaviors of solutions of some nonlinear
oscillation equations with strong damping, Adv. Math. Sci. Appl. 4 (1994), 285—
295.

K. Ono, On global existence, asymptotic stability and blowing up of solutions
for some degenerate non-linear wave equations of Kirchhoff type with a strong
dissipation, Math. Methods Appl. Sci. 20 (1897}, 151-177.

J. Y. Park and 1. H. Jung, On o class of quasilinear hyperbolic equations and
Yosida approzimations, Indian J. pure appl. Math. 30(11) (1999}, 1091-1106.

[10] J. Y. Park, L. H. Jung, and Y. H. Kang, Generalized gquasilinear hyperbolic equa-

tions and Yosida approximations, submitted.

(11}S. 1. Pohozaev, On a class of quasilinear hyperbolic equations, Mat. Sb. 25

(1975), 145-158.

[12] H. Tanabe, Fquations of Evolution, Pitman, London, 1987.

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 6039-735,
KOREA
E-mail: jyepark@hyowon.pusan.ac.kr



