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PICARD VALUES AND NORMALITY CRITERION

MING-LIANG FANG

ABSTRACT. In this paper, we study the value distribution of mero-
morphic functions and prove the following theorem: Let f(z) be a
transcendental meromorphic function. If f and f! have the same
zeros, then f/(z) takes any non-zero value b infinitely many times.

1. Introduction

Let f(2) be a non-constant meromorphic function in the whole com-
plex plane. We use the following standard notations of value distribution
theory,

T(T: f),m(?", f), N(’J", f),.N(T, f)’ e
(see Hayman (1], Yang [2]). We denote by S(r, f) any function satisfying

S(r, f) = o{T(r, N},

as ¥ — +00, possibly outside of a set with finite measure. We define
Ahlfors-Shimizu characteristic function Ty{r, f):

(1.1) w )= [ 25,

where
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The relation between T'(r, f) and Ty(r, f) is given by

(13) T(r, ) = To(r, f) + O(1).

The order A of the function f(z) is defined as
——log T'(r, f)

A= lim
r—co  logr
Let f(2) be a meromorphic function. If f(z) = 0 if and only if f'(z) =0,
then it is called that f(z) and f’(z) have the same zeros.
In 1959, Hayman [3] proved the following result.

THEOREM A. Let f(z) be a transcendental meromorphic function.
If f £ 0, then f’' takes any non-zero value b infinitely many times.

Bergweiler and Eremenko [4] proved

THEOREM B. Let f(z) be a transcendental meromorphic function
with finite order. If the zeros of f are of multiplicity > 2, then f' takes
any non-zero value b infinitely many times. Moreover, the assumption
that f is of finite order is necessary.

Naturally, we ask that under what condition f’ takes any non-zero
value b infinitely many times for any transcendental meromorphic func-
tion with infinite order. In this paper, we prove

THEOREM 1. Let f(z) be a transcendental meromorphic function
with infinite order. If f and f’ have the same zeros, then f' takes any
non-zero value b infinitely many times.

In fact, we have proved

THEOREM 2. Let f(z) be a transcendental meromorphic function
with infinite order. If f and f' have the same zeros, then f'(z) — b(z)
has infinitely many zeros for any b(z) € S. Here § = {az": a #£ 0,n =
0,1,2,---}.

In order to prove Theorem 2, we shall first prove the following result.
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THEOREM 3. Let F be a family of meromorphic functions in a do-
main D and let a(z) be a non-vanish analytic function in D. If, for
every function f € F, f and f' have the same zeros, and f(z) = a(z)
whenever f'(z) = a(z), then F is normal in D.

Theorem 3 implies the following result obtained by Xu [5] and Pang

6].

THEOREM C. Let F be a family of meromorphic functions in a
domain D and b be a non-zero value. If, for every function f € F, f
and f' have the same zeros, and f(z) = b if and only if f'(z) = b, then
F is normal in D.

For a transcendental function with finite order, the following result is
proved by using the method of Bergweiler [7].

THEOREM 4. Let f(z) be a transcendental meromorphic function
with finite order. If the zeros of f are of multiplicity > 2, then f'(z)—p(z)
has infinitely many zeros for any polynomial p(z) # 0.

2. Proof of Theorem 3

For the proof of Theorem 3, we need the following lemmas.

LEMMA 1 ([8, 9]). Let F possesses the property that every func-
tion f € F has only zeros of multiple at least k. If F is not normal at a
point zg, then for 0 < a < k, there exist a sequence of functions f; € F,
a sequence of complex numbers z; — 2o and a sequence of positive num-
bers p; — 0, such that p;® f;(z; + p;() converges locally uniformly to
a non-constant meromorphic function g(¢) on C. Moreover, g has only
zeros of multiple at least k.

LEMMA 2 ([8]). Let R(z) be a non-constant rational function, k a
positive integer and let b be a non-zero value. If the zeros of R(z) are

of multiplicity at least k + 1, and R®(z) # b, then R(z) = 020"

az+

where «, 3, 7, ¢ are constants such that oy # 0, || + |8] # 0.
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LemmA 3. Let f(z) be a meromorphic function of finite order and
let b be a non-zero complex number. If f and f' have the same zeros,
f'#b, then f(z) is a constant.

Proof. Obviously, the zeros of f(2) are of multiplicity at least 2 by the
assumption on f, and f can not be a polynomial of degree 2. If f(z) is a
transcendental meromorphic function with finite order, then by Theorem
B we get that f' = b has infinitely many solutions, a contradiction.

Hence f(z) is a rational function. Suppose that f(z) is a non-constant

rational function. Then by Lemma 2 we know that f(z) = %,

where o, 3, 7, & are constants such that ay # 0, |8| + [§| # 0. Thus
we have f/(z) = b+ ﬁg, where A is a non-zero constant. Hence

we deduce that f'(z) =0ifand onlyifz € {z: b+ (a_z%@"’ = 0} and
f(z) = 0 if and only if z = %. Thus f and f' do not have the same

zeros, a contradiction. Hence f is a constant. This completes the proof
of the lemma. O

Proof of Theorem 3.  Suppose that F is not normal at a point z €
D. Then by Lemma 1, for o = 1, there exist a sequence of functions f; €
F, a sequence of complex numbers z; — zp, and a sequence of positive
numbers p; — 0, such that g;({) = pj_1 fi(z; + p;¢) converges locally
uniformly to a non-constant meromorphic function ¢(¢). Moreover, g
has only zeros of multiple at least 2.

Suppose that ¢'(¢o) = 0. Then there exist {;, {; — (o, such that

gi(¢) = Fi(zi + () =0, i=1,2,.

Hence f;(z; + p;¢;) = 0 and g;(¢;} = 0 for j = 1,2,---, since f; and
[; have the same zeros. Thus we get g{(o) = lim g;(¢;) = 0. Hence we
j—oo

prove that g(¢) and ¢'(¢) have the same zeros, since the zerso of g(¢)
are of multiplicity > 2. Obviously, a(zg) # 0,00. From Lemma 3, there
exists (o such that ¢'({s) = alzp). Hence there exists § > 0 such that
g(¢) is analytic on Dgs = {( : |¢ — (o] < 26}. Thus g;(() are analytic
on Ds = {(: |¢ — Co| < d} for sufficiently large j and g;({) converges
uniformly to ¢'({) on Ds. Next consider two cases.

Case 1. There exist € (0 < € < 8) and infinitely many 7 such that

9;(C) — a(z; + pi€) = filz; + piC) — alz; + pi¢) # 0,
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on De = {¢: |¢ (ol < €}. Since g5(¢) —a(z; +p;¢) converges uniformly
to ¢’'(¢) — a(z0) on D.. Hence by Hurwitz’s theorem we deduce that
g'(¢) — a{z) = 0 on D, thus we have

g () —a{z) =0, forall (eC.

Next we can easily obtain that ¢(¢) is a constant, a contradiction.
Case 2. There exist infinitely many j such that ¢; — (o and f](z; +

piC;) = a(z; + p;¢;). Without loss of generality we assume that
95(¢5) — alz + piGy) = filz; +05¢) — alz; + piG5) = 0,

for j = 1,2,3,---. Since f;(z) = a(z) whenever f{(2) = a(z), we have

filzs + piCs) = alz; + p;¢;) and g;(¢) = p7 ' f3(z; + pis) = p; 'alz; +
p;¢;) — oo. This contradicts that lim g;{(¢;) = g(¢o) # oo,
J—00

The proof of the theorem is complete, O

3. Proof of Theorem 2

Since f(z) is of infinite order, we have

m T(T!.f) = 00

3.1 rooo (logr)?

Hence we obtain

— T(r, )
.2 . 1. —~—z ! =
(32) oo (logr)? e

Thus by (1.1)-(1.3) and (3.2) we have

- A ,fySZ)
(3.3) i A _

r—0o0 IOg T
Set,

fZz) 1 5
F={g;(2) = i1 d = 1,2,3,-- 15 < |z| < 5}.

Claim: F is not a normal family.
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Suppose that F is a normal family. Then by Marty’s criterion, there
exists M > 0 satisfying

gfzy <M, forj=1,23--,1<[<2
Hence

A 29) <L [ ((2)7) iy cmav

|z|<2"

S5 (] ((Fa)) e

2"‘<|z|<2m+1

=%2 f f (o (w))2dédn  (w = € +in)

1< |w| <2
<3M?j = Myj, (M;=3M?).

Thus, for any r > 0, 277! <r < 27, we have

(29 4 (5,22 <o < 20 (EE5 1),

which contradicts (3.3). Therefore F is not normal. Hence the family

f(¥2)

(1)

1 5
flz{hj(z)z =1,2,3,---,§<|Z|<§}

is not normal. Thus by using Theorem 3 for a(z) = az™, we know that
there exist infinitely many j and z; such that Aj(z;) = a2}, that is

F(22;) = a(22;)". Hence we deduce f'(z) — az"™ has 1nﬁmte1y many
zeros. The proof of the theorem is complete.

4. Proof of Theorem 4

For the proof of Theorem 4, we need the following lemmas.
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LEMMA 4 {{10]). Let f(z) be a transcendental meromorphic func-
tion. Then for each positive number € and each positive integer k, we
have

1) kN <N ( ﬁ%) L+ N, ) +€T(r, £) + S(r ).

LeMMA 5 ({4]). Let g(z) be a transcendental meromorphic function
with finite order. If g(z) has only finitely many critical values, then g(z)
has only finitely many asymptotic values.

LEmMA 6 ([11]). Let g(z) be a transcendental meromorphic function
and suppose that g(0) # oo and the set of finite critical and asymptotic
values of g(z) is bounded. Then there exists R > 0 such that

lg(Z)l lg(=)|

)IZ2|| 0g =

for all z € C\{0} which are not poles of g(z).
Proof of Theorem 4. Let p(z) = 2" +a12" ! +-++ +an_12 +an,

a # 0. In the following, we consider two cases.
Case 1. f(z) has only finitely many zeros. In this case , we have

(4.2) N ('r, %) = Qlogr) = S(r, f).

()75
" f f-p
1 1
('f', W) +m (T, m) -+ S(T, f)
1
mn (T, ?{m) + S('J", f)
_ T(r,f(n+2)) - N ( f(i”) + S(r, f)

Obviously

3

IA
3

(A

< T(gr'}f') +(n+ 1)?(7‘, fiI—N ( f("1+2)) + S(n, N,
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thus by (4.1) and (4.2) we have
— 1 1
T(r,f)<(n+1)N(r f}+ N (T, —f~) +N (7”, f,—_““I;)

1
—N (T‘, f(T-I-Z.)—) + S(T’,_f)

SZ+1N( f)+N( })+N(r,f,—1_;)
o 4T<r,f)+5(r,f)
5§2+3T( f)+N( 5 )+S(rf)

Hence we obtain
T(r, f) < (2n + 4N ( ) + S(r, f).
Therefore, f'(z) — p(z) has infinitely many zeros and the conclusion of
the theorem is valid in this case.
Case 2. f(2) has infinitely many zeros 21, 22, ---. Define
g(z) = f(z) — (n+1 PR P +anz).

Then ¢'(z) = f'(z)—p(z). We has to show that g'(2) has infinitely many
zeros. Suppose that ¢'(z) has finitely many zeros, then g(z) has finitely
many critical values. Hence by Lemma 5 we know that g{z) has only

finitely many asmyptotic values. Without loss of generality we assume
that f(0) # oo, thus by Lemma 6 we deduce that

20" (%) o 1, lo(z)l
—Z > —lo .
lg(z;)] — 2 R
legé'(z') lg(z;)l
a(z;
7 — 0. On the other hand, l239' )l _, p 41 asj — oo, a contradic-
9{215 J
tion. Hence we deduce that f/(z) — p(z) has infinitely many zeros. The
theorem is proved. O

— 00 as j — oo, since == log — 00 as

In particular, o
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