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Advanced Polynomial Neural Networks Architecture with New
Adaptive Nodes

Sung-Kwun Oh, Dong-Won Kim, Byoung-Jun Park, and Hyung-Soo Hwang

Abstract: In this paper, we propose the design procedure of advanced Polynomial Neural Networks(PNN) architecture for optimal
model identification of complex and nonlinear system. The proposed PNN architecture is presented as the generic and advanced type.
The essence of the design procedure dwells on the Group Method of Data Handling (GMDH). PNN is a flexible neural architecture
whose structure is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated
in a dynamic way. In this sense, PNN is a self-organizing network. With the aid of three representative numerical examples, compari-
sons show that the proposed advanced PNN algorithm can produce the model with higher accuracy than previous other works. And
performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

Keywords: polynomial neural networks(PNN), group method of data handling (GMDH), self-organizing network, approximation

and generalization capabilities

L. Introduction

The mathematical models to express dynamic analysis of
nonlinear real system, have had lots of difficulties in the selec-
tion of variables constructing the model among many input-
output variables. Moreover, high-order equation requires a
large amount of data for estimating all system parameters in
mathematical models. So it needs the model designer who has
had the specific and prior knowledge of the model architecture
or its components. In that case, it is impossible to make the
high performance model architecture or to perform process
control very well when we depend on the specific and prior
knowledge of designer and experiment too much. To deal with
such a problem, GMDH[1] was developed in Russia in the late
1960's by Ivakhnenko as an analysis technique for identifying
nonlinear relations between system inputs and outputs. The
primary disadvantage of GMDH is that it not only can gener-
ate a complex polynomial even for some simple system but
also can not take into consideration of input-output relation-
ship well because of its limited architecture, and if there is a
sufficiently large number of training data, GMDH has a ten-
dency to produce overly complex networks as it tries to stretch
for the last bit of accuracy. So it can be shown that the GMDH
is very ineffective in modeling nonlinear systems having dif-
ferent characteristics in different environments.

In order to overcome the limitations of GMDH, we propose
a PNN algorithm and show its design procedure for optimal
PNN model. The number of input variables used in Partial
Description(PD) of each node is extended and the order of
regression polynomial used in PD is also extended as linear,
quadratic, and cubic. And also the number of input variables
and the order of regression polynomial are not fixed and can
be changed in each layer of PNN. Through the extended re-
gression polynomial, the architecture of PNN can be changed
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to adapt to system environment. Two types of architectures,
the basic PNN and modified PNN architecture, are studied in
this paper.

II. PNN algorithm

PNN algorithm that is based on GMDH method can utilize
other mathematical forms such as linear, modified quadratic,
cubic, high-order polynomial and so on.

By choosing the really significant input variables and poly-
nomial order among these various kinds of forms, we can
obtain the best ones from the extracted partial descriptions
according to both selecting nodes of each layer and generating
additional layers until the best performance is taken. A new
methodology which includes these design procedure leads us
to get the optimal PNN architecture for identification of
nonlinear system. The input-output data are given as follows.

X, ¥)=(x Xops vons Xis Vi) i=1, 2,3 ..., n.

The input-output relationship of the above data by PNN
algorithm can be described in the following way

y=r0n 6o xy). M

The estimated output j of the above output y is as fol-
lows
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Where, c¢, denotes coefficients.

To get the estimated output §, we construct a PD for each
pair of independent variables in first generation according to
number of input variables. We determine coefficients of PD by
the least squares method using training data set and then the
choice of optimal estimated model is implemented in the first
layer and compute a PD from new intermediate variables(for
example z,, )generated from the next generation. After that, we
take another pair of new input variables, and repeat operation
until the stop condition of PNN algorithm is satisfied in each
generation. PNN algorithm can be described as the procedure
of eight steps. Each step is as follows:
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Step 1: Determine system input variables

Define the input variables as x, , i=1 ,2, = , n related to out-
put variable y. If needed, the normalization of input data is
done. Depending on the no. of system input variables as
shown below, two types of PNN architectures are considered
for performance improvement of PNN model.

Refer Figs. 1-2.

a) In case that the no. of system input variables is 2 or 3, the
advanced type is used

b) In case that the no. of system input variables is 3 or more,
the generic type is used.

Step 2: Division of input and output data set

The input and output data sets (X,,y)=(x;,%,..-,

Xu i) 1=1,2,3,..,n are divided into two parts of the train-
ing data subset r, and the testing data subset n,, . The training
data subset is used for obtaining PNN model by estimating the
coefficients of the PD of nodes in each layer of PNN. The
testing data subset is used to evaluate the PNN model esti-
mated using the training data subset, and to construct the PNN
model with better prediction ability for ranking and selecting
the PDs of that estimated model of each layer from the view-
point of mean squared error. Where, n=n, +n,

Step 3: Decision of PNN architecture

PNN architecture is decided according to the number of in-
put variables and the order of PD in each layer. Two kinds of
PNN architectures, which are the basic PNN and the modified
PNN architecture, are presented and also two cases for each
architecture are used.

Accordingly, with respect to the PNN architecture, we con-
sider as follows.

a) Basic PNN architecture — The number of input variables
of PDs is same in every layer.

Case 1: The polynomial order of PDs is same in every
layer.

Case 2: The polynomial order of PDs in 2™ layer or more
has a different or modified type in comparison with that one of
PDs in 1% layer.

b) Modified PNN architecture — The number of input vari-
ables of PDs is different in each layer.

Case 1: The polynomial order of PDs is same in every
layer.

Case 2: The polynomial order of PDs in 2™ layer or more
has a different or modified type in comparison with that one of
PDs in 1* layer.

The specific feature of the modified PNN architecture is
that not only the order but also the number of independent
input variables does not remain same in PDs of each layer but
is expanded to various kinds of types in the next new layer.
Therefore the complex PDs as well as the simple PDs can be
utilized effectively according to various kinds of modified
PNN architectures by taking into consideration of both com-
pactness and mutual input-output relationship of each layer.

Two types, a) the generic and b) the advanced type, of the
basic and modified PNN architectures are shown in Figs. 1-2,
where z*;(Case 2) of the 2™ layer denote that polynomial order
of the PD of each node has a different or modified type each
other in comparison with z;(Case 1) of the 1* layer.

In b) the advanced type of Figs. 1-2, the node of dotted line
means the nodes of the previous layer. The superscript A of
PDy" denotes the layer number and the subscript B of PDg*
denotes the node sequence number of new nodes generated by
the combination of the node outputs(outputs of PDs) of the
preceding layer at the A™ layer.

Step 4: Determine the no. of input variables and order of a
PD

We determine the regression polynomial architecture of a
PD related to PNN architecture and refer to Table 2. We
choose the input variables of a node from N input vari-
ables x,,x,,...,xy . The total number of PDs of current layer
depends on the number of the selected input variables from
nodes of preceding layer. This results in k= NY(N —r)ir!
nodes, where N is the total number of the independent vari-
ables and r is the number of the chosen input variables. The
choice of both the input variables and the order of a PD helps
to select the fittest estimated model with regard to characteris-
tics of system, model design strategy, nonlinearity and predic-
tive capability as shown in Table 1.

Table 1. PNN architecture.

p=q: Basic PNN
P=Q: Case 1
P2Q: Case 2

p#=q: Modified PNN
P=Q: Case 1
PzQ: Case 2

(0=2,3,4,672,3,4,P=1,2,3,Q=1,2,3)

q Q

Step 5: Estimate the coefficients of a PD
The coefficient vector C,is obtained by solving (5) to
minimize the mean squared error between y;, and z,, of eq.

©))

1 Nu
N PACTE €))
w i=0

E=

Using the training data subset, n, , the set of output equa-

s

tions can be represented in each layer
Y=XC,. G)]

The coefficients of PD of nodes in each layer are deter-
mined by the standard least squared method as follows

C = (X,.TX,.)”'X,.TY . &)
Where
Y =[y, Yoooidn, ]T?Xi ={X, Xzi"'in"'Xn,,i]T’
X'u= [y Xpin e Xy - - Xty Xpi o+ - Xie ]
C =[c, cliCZi""’cn'i]T
i: Node number, 1, : Number of the training data subset, n :
Number of the selected input variables, m : maximum or-

der, n' : Number of estimated coefficients except for constant
term.
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Fig. 1. Configuration of the basic PNN architecture
(The generic and advanced PNN).

This procedure is implemented repeatedly for all nodes of
the layer and also for all layers of PNN from input layer to
output layer.

Step 6: Choosing PDs with better predictive capability

We determine the total number, NV(N —#)lr!lof PDs ac-
cording to combinations of nodes in each layer. Each PD
which was estimated using the training data subset is evalu-
ated by computing identification error of the mean squared
error using the testing data subset. And we compare those
evaluated output and choose several PDs which have better
output performance. Here, we use the pre-defined number W
of PDs with better predictive capability that must be preserved
for optimal operation of the next generation in the PNN algo-
rithm. The outputs of the preserved PDs(called Survivors),
serve as inputs to the next layer(generation).

There are two cases for the decision of the number of the pre-
served PDs in each layer

a)If NY(N-r)lr! <W, then for the next layer, the number
of the preserved PDs is N/(N —r)lr!

b) If NY(N-r)!r! 2 W, then for the next layer, the
number of the preserved PDs is

Zﬁl‘(xp,xq) -Case 1
Zf(x,x )-Case 2

(a) Generic type

Partial 7= Xp Partal Z=0(x,x,) -Case |
s Description TR s Deseripton Z'~f(x x,)-Case 2
P

Partial
5
' Z‘ ﬁx D)

(b) Advanced type
Fig. 2. Configuration of the modified PNN architecture
(The generic and advanced PNN).

Step 7: Stop condition

Two methods for stop condition of PNN algorithm are com-
monly available.

a) Method 1: The stop condition shown in eq. (6) indicates
that an optimal PNN model was reached at the previous layer,
and the modeling process is stopped. The stop condition of
method 1 can be described as follows:

E, > E ()

J

Where E; ;
layer, E.; minimal identification error of previous layer

b) Method 2: PNN algorithm terminates when the number
of generation predetermined by the designer is reached. If the
procedure for PNN modeling is stopped according to the
Method 1, PNN models with better performance are ignored
under generation of layers. And if there happens a sufficiently
large number of input variables, PNN architecture has a ten-
dency to produce overly complex networks. So it would take
too much time and it would require too much computer mem-

minimal identification error of the current

ory. To compensate for these difficulties, we take into consid-
eration of both a stop condition for better performance and the
number of generation predetermined by designer. The network
generation of PNN architecture is stopped at most in the pre-
determined layer for simple and efficient modeling. This
method helps to achieve a balance between model accuracy
and complexity.

Step 8: Setting new input variables in the next layer

If E, (the minimum value in the current layer) is not satis-
fied for a stop condition, it indicates that progress towards the
best model is still being continued. The outputs of the pre-
served PDs serve as new inputs to the next layer. It can be
described as the following

Xy = 2y Xg; = Zygaeny Xy = 2 - )

> i wj

And PNN algorithm is carried out repeatedly from step 4 to
8 for generation of new estimated outputs z§ as inputs to the
next layer.



46 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 3, No. 1, March, 2001

I11. Simulation and discussion of resuits

According to each step shown in the preceding section, the
PNN method is illustrated with the aid of the well-known
problem of the nonlinear system proposed in [6], sewage
treatment process[8][11] and gas furnace process[15] .
1. Nonlinear static system

In this section, we perform a simulation to illustrate the
validity of the proposed algorithm.

The training data in this example are obtained from a two-
input nonlinear equation defined by

y=0+x7+x"), 1<x,x, <5. (8)

This nonlinear static equation is widely used to evaluate
modeling performance. This equation was also used by
Sugeno and Yasukawa [6], Nakanishi [7], and Kim[12][13] to
test their modeling approaches.

This system represents the nonlinear characteristic as shown
in Fig. 3, which shows a three-dimensional input-output graph
of this system. From this system equation, 50 input-output
data are obtained.

Fig. 3. Input-output relation of nonlinear system.

To allow comparison, we use the same performance index
adopted in refs. [6]:

R SN
PI —m’Z:I:(yi PA 9

Where m is the number of data pairs, and y,and J, are
the i the desired output and model output, respectively.

In this simulation, the proposed polynomial neural networks
architecture is used to build the optimal model. Because only
two System input variables are considered, it is difficult

Fig. 4. PNN architecture with 2 system inputs for nonlinear
system's identification.

to generate the polynomial neural networks of this nonlinear
system. Therefore, the PNN architecture uses the advanced
Type shown in Fig. 4.

Table 2. Form of regression polynomials used in PNN

architecture.
N\(;' ofmput Order o.f Node equations considered
ariables Polynomial
_Typel cotexyteaxs
2 Type 2 cotexiteaatest e test X
Type 3 oty Xt eXatesxy Xo
Type 1 cotexiteaxatesx;
Tvoe 2 cotepxitertesteaitest’
3 P Fesxy FentxaHegX xyhearax;
Type 3 cotextexytesxst
caxpres X3 heexax;

» The Basic PNN architecture

Case 1: This case is that the number of input variables of
PDs is same in every layer and the polynomial order of PDs is
also same in every layer.

The training result plotted in Figs. 5 depend on both the
number of node input variables and three different types of
polynomial order such as linear, quadratic, or modified quad-
ratic, that is, Type 1, Type 2, or Type 3. Here Type 1, Type 2,
and Type 3 are listed in Table 2. Fig. 5 shows the performance
index (identification error) of PNN architecture with 2 node
inputs and Type 1, Type 2, and Type 3. In that case the best
result of 2 node inputs, PI=0.0212 is obtained by using Type 2.

Type 1:—=— Type 2:—e— Type 3—A— |

Identification error
s e
<
R
T T

Fig. 5. Identification error (Every layer: 2 inputs).

Case 2: This case is that the number of input variables of
each PD is same in every layer but the polynomial order of
PDs in the 2™ layer or more has a different or modified type in
comparison with that one of PDs in the 1¥ layer.

The training result is plotted in Fig. 6. In Fig, ‘Type a =
b’(a, b=1, 2, 3) means that the polynomial order of PDs

Type 1->2:—&—Type 1 ->3:—ea—
Type 2->i:—a~Type 2->3:—w—Type 3->2'—&—

identitication eor
—

Fig. 6. Identification error (Every layer: 2 input).
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changes from Type a in the 1% layer to Type b in the 2"° layer
or more.

Fig. 6 show the performance index of PNN architecture
with 2 node inputs and Type 122, Type 13, Type 221,
Type 223, and Type 3->2. In that case the best result of 2
node inputs, PI=0.0212 is obtained by using Type 132 .

» The Modified PNN architecture

Case 1: This case is that the number of input variables of
each PD in the 1 layer is different in comparison with that
one in the 2™ layer or more and the polynomial order of each
PD is same in every layer.

Fig. 7 shows the identification error of modified PNN in
Case 1 when the number of input variables is 2 in 1% layer and
that of input variables in 2™ layer or more is 3 with Type 1,
Type 2, and Type 3. The best result, PI=0.00041, is achieved
by using Type 2.

Type 1:—#—Type 2:—e— Type 3i—a~

0280 [
0245
o210 L
0175 |
o140 |
0105 L
—
oo7a b \
0035 ‘\‘

0 000 s s M r—]
1

Identitication error

Fig. 7. Identification error(1st layer: 2 input, 2nd layer or
more: 3 inputs).

Case 2: This case is that the number of input variables of
each PD in the 1* layer is different in comparison with that
one in the 2™ layer or more. And also the polynomial order of
each PD in the 2™ layer or more has different or modified type
in comparison with that one in the 1* layer.

Fig. 8 shows the identification error of modified PNN in
Case 2 when the number of input variables is 2 in 1* layer and
that of input variables in 2 layer or more is 3 with Type 12,
Type 123, Type 221, Type 23, and Type 3-22. The best
result, PI=0.0105, is achieved by using Type 3->2.

Table 3. shows a comparison of identification errors with
previous modeling methods. The experiment results show
output performances of the proposed PNN model according to
two kinds of PNN architectures.

As we know from Table 3, the performance results of PNN
architecture are quite satisfactory. Compared with approaches

Type 1->2: —@—Type 1->3: —e—
Type 2->1: —A—Type 2->3° —v—Type 3->2: —e—

Identification error

Layer

Fig. 8. Identification error(1st layer: 2 input, 2nd layer or
more: 3 inputs).

presented in previous literatures [6][12]-[14], our modeling
method has much more accuracy.

Table 3. Comparison of identification error with previous
modeling methods.

MSE
Model
PI
Sugeno and Yasukawa [6] 0.079
Kimetal [12 ] 0.019
Kimetal. [13] 0.0089
Gomez-Skarmeta et al. [14] 0.070
Basic PNN Case 1 0.0212
Our model gase ? 883}1?
. ase .
Modified PNN | ose2 0.0105

2. Sewage treatment process.

Sewage treatment generally uses the activated sludge proc-
ess which consisted of a sand basin, primary sedimentation
basin, aeration tank and final sedimentation basin(see Fig.9).

Activated Shudge Process

+ Waste Water Flow
——>  : Flow of solid murerial

]
, Al gl PE—
PA—
[

Fig. 9. Configuration of the sewage treatment system.

The suspended solid included in the sewage is sedimented
by gravity in sand and primary sedimentation basins. Air is
consecutively absorbed in the sewage in the aeration tank for
several hours. Microbe lump(that is called floc or activated
sludge) springing naturally, mainly removes the organic matter
from the aeration tank. Activated sludge biochemically oxy-
genates, proliferates and resolves the organic matters into
hydrogen and carbon dioxide by metabolism. In the final
sedimentation basin, floc is sedimented, recycled and again
used to remove the organic matter and then purified water is
transported to the tertiary sedimentation basin.

The activated sludge process is the process that involves an
aeration tank and final sedimentation. We measure the bio-
logical oxygen demand(bod) and the concentration of sus-
pended solid(ss) in influent sewage at the primary sedimenta-
tion basin, and effluent bod(ebod)and ss(ess) in the effluent
sewage at the final sedimentation basin. Because ebod and ess
are changed, depending on the bod and ss, dissolved oxygen
set-point(dosp) and recycle sludge ratio setpoint(rrsp) are set
so that ess and ebod should be kept up less than the prescribed
small quantity. Ebod and ess depend on mixed liquid sus-
pended solid(mlss), waste sludge ratio(wsr), rrsp and dosp.
Bod has a correlation with ss.

In this paper, a sewage treatment system plant in Seoul, Ko-
rea, is chosen as a model. The Self-organizing Polynomial
Neural Networks modeling by two kinds of architecture, the
basic PNN and the modified PNN, is carried out using 52 pairs
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of input-output data obtained from the activated sludge proc-
ess. The performance index used in the computer simulation
will be the same as eq. (9). The experiments were completed
for four fundamental architectures of the PNNs and the results
are shown in a series of figures.

Type . —m— Type2 —d Typed —m— ol —
Type ' @ Typed -r-Aeec Typed cemee-

Mdentificanan error

Fig. 10. Identification error of basic PNN in Case 1
(Every layer: 2 inputs).

Typel>2  —m— Type2>l  —a— Typedal  —w—|[Pl —
Type 1->2 -~ Type2->|  ---&e-- Type3->1 S 4

Identification crrar

Fig. 11. Identification error of basic PNN in Case 2
(Every layer: 2 inputs).

Typet —@— Typc2 ~—A-— Type} —w— Pl ——
Type (M- Type2 --de- Typed oo EP) e

Identigication error

Fig. 12. Identification error of modified PNN in Case |
(Ist layer: 2 inputs, 2nd layer or more: 3 inputs).

Typet>2 —m— Type2>l —a— Typed>l —~w—|{pf —
Type 1->2  ---m-- Type2->|  ---A-- Type 331 -mo || EPL eooen

Identification error

Fig. 13. Identification error of Modified PNN in Case 2
(Ist layer: 2 inputs, 2nd layer or more: 3 inputs).

Table 4 summarizes the results of comparative analysis of
PNNs and other models. Again, the performance of the PNN
is far better both in the sense of its prediction (generalization)
and approximation abilities.

Table 4. Comparison of identification error with previous

modeling methods.
M
Model SE

PI EPI

Oh and Pedrycz’s Simplified 12.802 15.915
model [8] Linear 6.396 54.233

, FNN-(GA) 10.163 14.698
Oh’s model [11] M4 GAHCM) | 9.620 | 10.129
Basic Case 1 9.158 17.367

PNN Case 2 9.353 9.211
Our Model Modi- Case 1 11.053 10.192
;ﬁ% Case2 | 5388 | 10.083

3. Gas furnace process

The proposed method is applied to the time-series data of a
gas furnace utilized by Box and Jenkins[15]. The delayed
terms of methane gas flow rate, u(t-3) and carbon dioxide
density, y(t-1) are used as system input variables. And as out-
put variable, y(t) is used. We choose the input variables of
nodes in the 1% layer of PNN architecture from these system
input variables. The total data set consisting of 296 input-
output pairs was split into two parts. The first one (consisting
of 148 pairs) was used for training. The remaining part of the
series serves as a testing set. We consider the MSE (eq. 9)
being regarded here as a performance index.

Again, a series of comprehensive experiments was con-
ducted for all four main architectures of the PNNs with the
results summarized in the following Figure.

—s—:[nputs2,Type2 —e—:Inputs 2.Type 3->2

—a—:inputs2->3.Type2 —y—:Inputs 2->3 Type 3->2

o028 b
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0025 L
LYY S
0023 4
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0018
'

(@)

—w—inputs2.Type2 ~—e——lnputs 2,Type 3->2
—a—Inputs2->3.Type2 -—w——inputs 2->3.Type 3->2

038
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o |
0s2 |
on |
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a2 |

ldentification error

ozs

[EIAN

026 |

61s
'

(b)
Fig. 14. Identification error of PNNs. (a) PI, (b) EPI

Table 5 contrasts the performance of the PNN network with
other fuzzy models studied in the literature. The experimental
results clearly reveal that the PNN outperforms the existing
models both in terms of better approximation capabilities
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(lower values of the performance index on the training data,
PI,) as well as superb generalization abilities (expressed by the
performance index on the testing data EPL).

Table 5. Comparison of identification error with previous
fuzzy models (PI- performance index over the entire
data set, PI;- performance index on the training data,
EPI, — performance index on the testing data).

MSE
Model
PI P, EPI,
Box and Jenkins’ model[15] 0.710
Sugeno and Yasukawa’ model[6] 0.190
Xu’s model[16] 0.328
Pedrycz’s model[17] 0.320
Oh and Pedrycz’s model[8] 0.123 | 0.020 | 0.271
Kim, et al.’s model[13] 0.034 | 0.244
Lin and Cunningham’s model[ 18] 0.071 | 0.261
Basic Case 1 0.021 0.271
Our PNN Case 2 0020 | 0272
model "\ fodified | Case ! 0.027 | 0.258
PNN Case 2 0.018 | 0.262

IV. Conclusions

In this paper, the design procedure of Polynomial Neural
Networks(PNN) is proposed to build an optimal model archi-
tecture for nonlinear and complex system modeling. Nonlinear
static system, sewage treatment process data, and gas furnace
data are used for the purpose of evaluating the performance of
the proposed PNN modeling method. Experimental results
show that the proposed method is superior to other previous
works from the viewpoint of the identification errors.

The feature of the proposed method includes the following.

1) The conflict between overfitting for approximation and
generalization can be avoided from the proposed PNN algo-
rithm.

2) Depending on the characteristics of nonlinear system,
several kinds of PNN architectures can be decided.

3) In spite of small data sets of nonlinear systems, it is pos-
sible to obtain the optimal PNN architecture to be able to
adapt to system environment

4) The number of input variables and the polynomial order
of PD can be chosen flexibly for the PNN modeling with
higher accuracy and better generalization ability
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