DOI QR코드

DOI QR Code

Extension of Topological Improvement Procedures for Triangular Meshes

삼각격자에 대한 위상학적 개선과정의 확장

  • Published : 2001.06.01

Abstract

This paper describes the extended topological clean up procedures to improve the quality of unstructured triangular meshes. As a postprocessing step, topological improvement procedures are applied both for elements that are interior to the mesh and for elements connected to the boundary and then Laplacian-like smoothing is used by default. Previous clean up algorithms are limited to eliminate the nodes of degree 3,4,8,9,10 and pairs of nodes of degree 5. In this study, new clean up algorithms which minimize the triple connection structures combined with degree 5 and 7 (ie ; 5-7-5, 7-7-5, 7-5-7 etc) are added. The suggested algorithms are applied to two example meshes to demonstrate the effectiveness of the approach in improving element quality in a finite element mesh.

Keywords

References

  1. Holmes, D. G. and Snyder, D. D., 1988, 'The Generation of Unstructured Mashes Using Delaunay Triangulation,' Proceedings of the 2nd Int. Conference on Numerical Grid Generation in CFD, pp. 643-652
  2. Rebay, S., 1993, 'Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm,' J. Comput. Phys., Vol. 106, No. 1, pp. 125-138 https://doi.org/10.1006/jcph.1993.1097
  3. 하태성, 김종태, 맹주성, 1994, '정렬배후면 격자계를 이용한 Delaunay 삼각화,' 한국항공우주학회지 제 22권 4호, pp. 43-52
  4. Lo, S. H., 1985, 'A New Mesh Generation Scheme for Arbitrary Planar Domains,' Int. J. Numer. Methods Eng., Vol. 21, pp. 1403-1426 https://doi.org/10.1002/nme.1620210805
  5. Yerry, M. A. and Shephard, M. S., 1984, 'Three-dimensional Mesh Generation by Modified Octree Technique,' Int. J. Numer. Methods Eng., Vol. 20, pp. 1965-1990 https://doi.org/10.1002/nme.1620201103
  6. Marcum, D. L. and Weatherill, N. P., 1995, 'Unstructured Grid Generation Using Iterative Point Insertion and Local Reconnection.' AIAA J. Vol. 33, No. 9, pp. 1619-1625
  7. Mavriplis, D. J., 1993, 'An Advancing Front Delaunay Triangulation Algorithm Designed for Robustness,' J. Comput. Phys., Vol. 117, pp. 90-101 https://doi.org/10.1006/jcph.1995.1047
  8. Canann, S. A., Tristano, J. R. and Staten, M. L., 1998, 'An Approach to Combined Laplacian and Optimization Based Smoothing for Triangular, Quadrilateral, and Quard-Dominant Meshes,' Proceddings 7th Int. Meshing Riundtable
  9. Freitag, L. A. and Carl Ollivier-Gooch, 1997, 'Tetrahedral Mesh Improvement Using Swapping and Smoothing,' Int. J. Numer. Methods Eng., Vol. 40, pp. 3979-4002 https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9
  10. Canann, S. A., Muthukrishnan, S. N. and Phillips, R. K., 1996, 'Topological Refinement Procedures for Triangular Finite Element Meshes,' Engineering with Computers, Vol. 12, pp. 243-255 https://doi.org/10.1007/BF01198738
  11. Corral, R. and Castaneda, J. F., 1998, 'Surface Mesh Generation by Means of Steiner Triangulations,' AIAA-98-3013
  12. Buscaglia, G. C. and Dari, E. A., 1997, 'Anisotropic Mesh Optimization and Its Application in Adaptivity,' Int. J. Numer. Methods Eng., Vol. 40, pp. 4119-4136 https://doi.org/10.1002/(SICI)1097-0207(19971130)40:22<4119::AID-NME254>3.0.CO;2-R