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MAGNETIC RESONANCE ELECTRICAL
IMPEDANCE TOMOGRAPHY

OHIN KwonN{, JIN KEUN SEO, EUuNG JE WOO=,
AND JEONG-ROCK YOON

ABSTRACT. Magnetic Resonance Electrical Impedance Tomogra-
phy (MREIT} is a new medical imaging technique for the cross-
sectional conductivity distribution of a human body using both
EIT {Electrical Impedance Tomography) and MRI (Magnetic Res-
onance Imaging) system. MREIT system was designed to enhance
EIT imaging system which has inherent low sensitivity of boundary
measurements to any changes of internal tissue conductivity values.
MREIT utilizes a recent CDI {Current Density Imaging} technique
of measuring the internal current density by means of MRI tech-
nique. In this paper, a mathematical modeling for MREIT and
image reconstruction method called the alternating J-substitution
algorithm are presented. Computer simulations show that the alter-
nating J-substitution algorithm provides accurate high-resolution
conductivity images.

1. Introduction

Imaging conductivity distribution of the human body has been re-
ceived considerable attention over the last 20 years, because of its po-
tential applications in clinical fields such as tissue characterizations,
plethysmography, pulmonary ventilation, stomach emptying, etc. The
EIT system was used to reconstruct the internal conductivity distribu-
tion o(z,y) on a cross-section ) of the human body. EIT system uses
current-voltage relations on the surface of the body which are measured
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by sensing electrodes attached on the surface including the boundary
oQ.
The principle behind the EIT system is the conductivity equation

div (a(:ﬂ,y, 2)Vu(z,y, z)) =0,

where u is the voltage potential. Under the assumptions that the body
is cylindrical and current flows in the zy—plane, the three dimensional
conductivity equation can be reduced to the two dimensional equation

div (cr(x, y)Vu(:n,y)) =0

in a slice 2. The mathematical problem of EIT is the inverse prob-
lem of finding o{z,y) from the given boundary current flux J - v|aq =
odu/0v|agn, where v denotes the unit outward normal to 2. Unfortu-
nately, the boundary current flux data J - vjsq used for reconstruction
is not sensitive to any changes of internal tissue conductivity values, so
that a small perturbation of the data J - v|gn could result in a large
change of ¢. This highly ill-posedness makes EIT system difficult to
produce true image ¢ with high quality.

MREIT is designed to solve many technical problems in conventional
EIT. It is a new EIT imaging technique of static cross-sectional con-
ductivity images utilizing CDI technique. The CDI technique uses MRI
system to measure internal current density. Please refer to [4, 5, 6, T}
for CDI technique. In 1994, MREIT system was proposed first by Woo,
Lee, and Mun[8]. However, they could not utilize the additional in-
ternal current density data effectively resulting in poor reconstruction
images. Very recently, Kwon, Woo, Yoon, and Seo[l] developed a new
mathematical model for MREIT where EIT system combines with CDI
technique effectively. Computer simulations based on this new model
provide accurate high resolution static conductivity images. Figure 1
shows the schematic diagram for MREIT system.

2. Mathematical modeling for MREIT

Let us begin with how the internal current density is obtained by
means of MRYI. MRI is an imaging modality based upon the nuclear
magnetic resonance{(NMR) signal from hydrogen atoms in the body. The
intensity of a pixel in the picture of MRI is proportional to the nuclear
spin density. The nuclear spin density p(z,y,z) is obtained by NMR
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FIGURE 1. MREIT schematic diagram.

signal S(tz,ty,t,) in 3-dimensional data acquisition axes (tz, ty,t;) using
the representation formula

Sty ty, t:) = / p(x,y, z) exp[—iy(2Gaty + yGyty + 2G.t;)] dedydz,
R3

where -y is the gyromagnetic ratio and G, Gy, G, are the magnetic field
gradient in the z,y, and 2 directions. We assume for a moment that the
test body is a cylindrical object so that its conductivity distribution & is
a function defined on xy—plane. If we inject a transverse electric current
independent of z—direction across the boundary of the cylindrical object,
the induced volume current density vector J do not have z-component.
This transverse current J causes a longitudinal magnetic flux density
vector B = (0,0, B;). This induced magnetic field B with the main
magnetic field By results in the new nuclear spin density p* which is
approximately given by

p*(x,y, 2) = p(z,y, z) exp[inT. B, (z,y, 2)],

where T, is the duration of the current pulse. Therefore, by compar-
ing two different NMR. images p and p*, we can calculate the induced
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magnetic flux density strength

__1_ -1 a(:c,y,z))
(21) B: (m’ ¥ Z) ’ch tan (ﬁ(ww Y, z) ’
where ¢ is the imaginary part of p*/p and 3 is the real part of p*/p. This
enables us to compute the internal current density from the Ampere’s
law )

3= 2V % B) = (3, ., ~0::,0)

In practice, the conductivity o of the human body is not cylindrical
and the three dimensional conductivity distribution will distort the in-
ternal current density vector, so we must take the out-of-plane current
into account. The z—component of the true current J,,. will induce the
transverse magnetic field B; and B,, the z— and y—components of B.
However, the transverse terms B, and B, are relatively small compared
with the longitudinal term B,. Therefore, the calculated internal cur-
rent J can be viewed as a small distortion of the true internal current
Jtrue-

However, this little distorted data J must be carefully considered in
order to get accurate reconstructions with high quality image. One can
develop various numerical algorithm using single current data J, but a
little distorted J could resuit in a completely different image from true
one. The inevitable errors of J due to non-zero z, y—components of B
should be reduced as much as we can.

In our MREIT system, the magnitude |J| will be used as a data
instead of the vector J. There are two reasons we are using this mag-
nitude data. First, this magnitude data reduces the error, because the
difference between two scalars |J,,,.| and |J| is smaller than the distance
between two vectors J.,. and J. Second, it has been proved that two
different internal currents are required to reconstruct o accurately. For
one current, a little distorted data J could lead to a completely differ-
ent conductivity image from the true one (See [2| for details). The two
currents J; and J» have the unique connection by the relation

Mil _ 9s]
|Vu1| |Vu2|

due to the fact that the conductivity is unchanged under different cur-
rents. Here, u; is the corresponding voltage potential to J;, j = 1,2. In
order to connect two different conductivity equations, it is more conve-
nient for us to use the magnitude |J| as a data for MREIT system. We
will discuss this connection later,
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Now, we are ready to explain the mathematical model for MREIT
explicitly. Let £2 be a cross-section of the body. For an applied current
g on the boundary 81, the electric potential » can be viewed as a weak
solution in the sobolev space H!(2) of the Neumann problem

div (a(a:,y)Vu(:ﬂ,y)) =0 inQ,

O'QE = on 0f), and f uds =0,
v 50

where v denotes the outward unit normal vector to 9¢2. However, we
cannot solve this standard Neumann problem because ¢ is unknown.
Our MREIT model utilizes the additional data a(z,y) = |J(z,y)| which
is obtained by CDI technique. So, we can remove the unknown variable o
in the conductivity equation by replacing the division of the magnitude
of the internal current density by the magnitude of the electric field.
Then the electric potential u becomes a solution of the nonlinear partial
differential equation

iv L(x’_gi)_ ulz _ in
(2.2) d (IVu(a:,y)lv ( ,y)) 0 Q,

I—V%I% =g onoR, and | uds—0.

It seems that, using the additional information on the internal cur-
rent density, the highly ill-posed inverse conductivity problem is changed
into the forward nonlinear problem (2.2). So, it is natural to consider
the major classical guestions for the forward problem (2.2) such as exis-
tence, uniqueness, and regularity properties. Unfortunately, the problem
(2.2) has several examples of non-existence and non-uniqueness. In our
practical study, the existence question could be ignored, but the issue
of uniqueness must be seriously concerned, because it is related to the
uniqueness of the conductivity image. Hence, the model equation (2.2)
must be revised to guarantee the uniqueness.

Notice that the equation (2.2} should not be regarded as the limit of
the similar equations

div (o, )| Vu(z, D2 Vu(z,y)) =0 asp—1

. a(z,y) _
dlv(ﬂ+1vu(w,y),2Vu(w,y)) ase—0

because the limiting solutions could be far different from the seeking
solution. We should not go astray from the main point.

or
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If a revised model has uniqueness, the unique solution must agree with
the practical solution. To revise the model (2.2), we need lpok into how
current flows on the interface of conductivity change. For considering a
simple conducting material consisting of two homogeneous media with
different. conductivities, the normal component of the current density J is
continuous across the interface while its tangential components change.
Therefore, if J is orthogonal to the level curve of o, the datum a = o| V|
does not contain any information of the variation of . To draw the level
curve of o, it is important to note that the direction Vu on the level curve
of o should not be pointing at the normal direction (for more details,
see section 3 and 4). From this reason, the alternating J-substitution
algorithm uses two applied currents g; and g; so that the corresponding
electric fields Vu; and Vug point at two different directions satisfying
Vuy x Vug # 0 in the domain 2. Since the conductivity ¢ will be
unchanged with different injected currents, it must be

a1(m,y) - a2($=y)
[Vur(z,y)l  [Vualz, )|

where a; and a9 are the magnitude of current density corresponding to
¢1 and g, respectively. Thus, we derive the following revised model

div (MVul(:r,y)) =0 in$,

in €,

[Vua(z, y)l|
. al(x?y) ) .
div { —————=Vus(x, =0 in(,
(T Vet
(2.3) a2 Qw01 Oun on 80
‘ Vg 0 V| v !
azy) _ @@y g

[Vu(z, ) {Vua(e, )l

/ulds=] ug ds = 0,
an 80

To apply two Neumann data g; and g2 in our real MREIT system,
four electrodes are placed at four sides of 0€2, so that two different cur-
rents flow using two pairs of electrodes (See Figure 2 (a)). Figure 2 (b)
shows that B, component for the phantom in Figure 2 (a) calculated
from the nuclear spin densities p* and p in (2.1). Based on the mathe-
matical model (2.3) for the MREIT system, we could develop an accurate
reconstruction algorithm, so called the alternating J-substitution algo-
rithim. In the alternating J-substitution algerithm, the conductivity &
is reconstructed iteratively by means of two measurements as follows.
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FIGURE 2. (a) A phantom for MREIT system, (b) The
z-component of magnetic flux B

Alternating J-substitution Algorithm
(1) Initial guess : For an initial guess, we may choose a
homogeneous conductivity oy, for example, og = 1. Let
n=0
(2) Forward solver with respect to gy : For a given conduc-
tivity oy, we solve the forward problem given by

div(0,Vul) =0 in Q,
(o}
Op—r ui _ =g ond and ul ds = 0.
O 89
(3) Updating strategy with respect to g; : Update the con-
ductivity in the next step by

n-l-l/? 'v nl in §.

(4) Forward solver with respect to go : For a given conduc-
tivity oy,41/2, we solve the forward problem given by

div (Jn+1/2Vu2+ /2) =0 inQ,

O n+1/2
Ont1j2—2—— =92 ondQ and n+1/2 ds =0.
31} aq
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(5) Updating strategy with respect to g; : Update the con-
ductivity in the next step by

a2

——— .
V3 )

Ontl =

(6) Stopping rule : If |opy1 —on} < € for some measure-
ment precision e, stop; otherwise go back to step (2)
substituting n «— n 4 1.

3. Non-existence and non-uniqueness

In this section, we discuss the existence and uniqueness for the non-
linear Neumann boundary value problem

o [ 22.9) _a
d (|Vu(m,y)|vu(m’y)) 0 inf,

a Ou
Wa—g on Jf), and muds-O.

When a = 1, the nonlinear forward problem (3.1) is reduced to p-Laplace
equation

(3.1)

div(|Vu[P~2Vu) =0 forp=1.

But 1-Laplace equation has quite different nature from p-Laplace equa-
tion for 1 < p < oo. Indeed, most properties in p-Laplace equation for
1 < p < o may not hold for 1-Laplace equation.

For simplicity, we confine ourselves to a unit square domain Q =
(0,1) x (0,1) in R2. We assume a > 0 is a piecewise €2 function and
g € L0Q) = {L2(89) | fyq9ds =0 }. As a simple example, let us
consider weak solutions of 1-Laplace equation with the injected current
g on 9N given by

-1 if z=0,
(3.2) glz,y) =11 if z=1,
0 otherwise.

This example has infinitely many weak solutions. To be precise, let us
introduce a function of the form

ws(o) = (2 3) + (o)
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where ¢(x) is a compactly supported function in the interval (0, 1) such
that
(3.3)

1
¢ € HY(0,1), f #(x)dr =0, —1 < ¢/'(z) < oo for almost all z € (0, 1).
0

It is easy to see that this uy is the weak solution of the elliptic Neumann
boundary problem

. 1 .
div (—l—mqug(:c,y)) =0 in§Q,

1 8U¢

1+¢,E=g on 952, and./(;Qu(;gds:O.

Hence any ug4, where ¢ satisfies (3.3), solve the same nonlinear equation
(3.1) with a = 1 and the Neumann data (3.2). This non-uniqueness tells
us that the reconstruction of the conductivity from a single equation
(3.1) may be impossible, because two different solutions uy4, and ug, of
(3.1) give two different conductivity images

1 1

STiee . M T aw

To discuss the non-existence question, first let us consider one dimen-

sional case
(%UJ@))' _0 in(0,1).

Since w/(t)/|v/(t)| is either 1 or —1, it must be that a’(¢) = 0 almost
everywhere. The corresponding result in two dimensional case is as
follow.

o1

THEOREM 3.1. Let @ = (0,1) x (0,1) and g € L&(99) be given by
(3.2). Assume that a(z,y) is a positive C' function such that 8a/8y = 0.
Then the necessary condition for the existence of solutions in C1(Q) of
the nonlinear problem (3.1) is that a =1 in Q.

Proor. We will only prove that e > 1 and please refer to [2] for the
proof of @ < 1. For an arbitrarily chosen t € {0,1) and A > 0, define a
function

0 if 0<z<t,
1

Ma(T,y) = sle—t) if t<z<t+h,
1 if t+h<ze<l.
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Applying 7 5 as a test function to the Neumann problem (3.1), with the
help of (3.2) we obtain

1 fit+h 1 t+h 1 1 Bu
- < - = —
h/t af{z)dz < h/t a(zx) {/0 vl Ba:dy} dr =1,

because d,u/|Vu| < 1. Since h is arbitrarily small, it must be a(t) > 1
for any t € (0,1). OJ

This counter example indicates that a single pair of data (g,a) is not
sufficient to reconstruct the conductivity. This is the reason why we
require at least two different pairs (g1,a1) and (g2, a2) for the unique-
ness of the inverse problem to reconstruct the conductivity distribution,
which will be discussed in the following section.

4. Uniqueness of the inverse problem with two measure-
ments

As discussed in the previous section, one measurement is not enough
to determine o uniquely. Therefore in this section, we consider the de-
coupled revised model motivated from (2.3) utilizing two measurements.

div (MV'al(m,y)) =0 inQ,

|V (2, y)|
- 0/2(1:}9) ) :
div | —————— Vua(z, =0 i,
e
a; Ouy az Oug
4.1 —_— e = d ———= = Q2
(4.1) |Vuy| Ov g1 an [Vuz| v g2 on o,
a (:E:y) _ a2($:y) in O

|VU1(Q’,‘, y)l B |V1L2(:L‘,y)|

fulds:/ u2d3=0.
a0 o0
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In the human body, the conductivity distribution can be viewed as a
piecewise continuous function contained in the following class

M
Y= {o‘ = 0’0—|—ZJ.,:XDi loro,cr,; € C*() for some 0 <a <1, M €N,
i=1

D; cc Q with C* boundary, which satisfies D; N D;=0

fori# 4, and ¢; > 0 or 0; <0on Dy, o1, < ¢ < oy for some
constants op,0p7 > 0}.

So, our aim is turned into finding the unknown inclusion

M
D=|]JD;
i=1

by solving the MREIT model expressed by (2.3) or (4.1). First, we
need to choose the appropriate pair of current patterns g and go so
that the corresponding voltage potentials u; and us satisfy Vuy(z,y) x
Vug(z,y) = 0 for all {z,y) € Q. This requires some technical definition
for the currents g. A function g € L3(89) is said to have only one sign
change on 81, if there exists a pair of connected subsets (9Q+,907) of
90 such that
ANTLUINT =89, TN =0,
and
g>00ond0", g<0ond .

For example, the function ¢ gy + c2g2 has only one sign change for arbi-
trary nonzero vector {¢1, ) € R%, where g; and g are defined by
-1  if1/2—e<y<1/2+¢€ and z =0,
nlr,yy=<1 if 1/2—e<y<1/24¢ and z=1,
0 otherwise,
-1 if 1/2—-e<x<1/24+¢€¢ and y =0,
a@z,y)=1¢ 1 if 1/2—e<z<1/2+4¢ andy=1,
0 otherwise,

(4.2)

for some 0 < € < 1/2. This example includes the current patterns that
are used to reconstruct the actual conductivity distribution in [1]. The
following observation plays an important role in the process of the proof
of our main theorems.
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LEMMA 4.1. Let g1, g» € L3(8Q) be given so that cyg; + c2g2 has
only one sign change on 8Q for any nonzero vector {c1,c;) € R If
there exist solutions u; € H'(S2) to the nonlinear problems

iv _—aj(:c) ()] = i
d (Wuj(wnv”ﬂ( )) 0

(4.3)
&5 6’U,j /
— =g; on 0 and ids =10
Vsl ov ~ ’ o
for # = 1,2, and the solutions satisfy a priori condition
a 4z
V| [Vug|’

then we have
¢ Vui(z) + eaVus (:ﬂ) #0
for all z € Q and nonzero vector (cy,cy) € R2.

PRroOF. For the proof, see {2]. O

Lemma 4.1 tells us that two gradient vector fields Vuy and Vug never
vanish, and moreover, these vectors are never parallel at any points un-
der the described assumptions. Using this fact, we can prove the follow-
ing uniqueness result for the inverse problem with two measurements.

THEOREM 4.2. Let g1, g2 € L3(0Q) satisfy the same assumption
in Lemma 4.1. If there exist solutions u; € H'(QQ) to the nonlinear
problems (4.3) for j = 1,2, and

@ a4
[Vua]| [V
is assumed to be represented by a function
M

g =gy + ZO’;‘XD‘ ex.
i=1

Then the unknown inclusion D = Uf\i 1 D is reconstructed by the mea-
sured data (a1, a2) such that

oD = {x € Q|ay or ag is discontinuous at x}.

PRrROOF. For the proof, see [2]. O
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Theorem 4.2 shows that under the prescribed assumptions the re-
gion where the conductivity distribution has jumps can be detected by
the observation of the discontinuities of the measured data {aj,az2). In
the following theorem, we show that the conductivity values as well as
the unknown inclusions can be determined in a simple case when we
know that the conductivity distribution o € ¥ is known to be piecewise
constants,

THEOREM 4.3. Under the same assumptions in Theorem 4.2 with an
additional assumption that

ay  ap
V|~ (Vg
is supposed to be represented by a fitnction
M
o=1 +ZH-5XDi € X for some M € N,
i=1

where p; is a constant with 0 # p; € (—1,00) for alli =1,-.- , M, the
conductivity distribution ¢ is thoroughly determined by the measured
data (a1, a2).

ProoF. For the proof, see [2]. O

=08 oF 24 B F il 08 =04 =02

a1(z,y) aa(z, ¥}

FI1GUrRE 3. The current densities a; and a; correspond-
ing to the current pattern g, and g; described in (4.2)
with € = 1/2, respectively.
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FiGURE 4. The target to be reconstructed and the image
of the sum of current densities.

To show the feasibility of the result in Theorem 4.2 and 4.3, we tested
a numerical reconstruction. The test model is taken with multiple anom-
alies DD = Ug-’:le, the boundaries of which are parametrically repre-
sented and the conductivity values are given as follows.

0D = {(0.5+0.3cos 8, —0.3+0.05sin8) |6 € [0,2m)}, ¢ =5 in Dy,
8Dy = {(—0.44+0.2c0s8,0.3+0.1sin6) |0 € [0,2x)}, =10 in Dy,
0D3 = {{(—0.6+0.1cos6,—-0.3+0.25in8) |8 € [0,27)}, 0 = 0.3 in Dj,
0Dy = {(0.74+0.1c0s6,03+01sin#) |0 € [0,2r)}, o=0.4 in Dy,
D5 = {(0.05cos §,0.5sin 8) | 8 € [0,2m)}, o=>5 in Ds.

Figure 3 shows the internal current densities a;(x,y) and az(z,y) cor-
responding to the current pattern g and g» described in (4.2) with
e = 1/2, respectively. With these data, the image constructed from the
sum of a; and a3 is presented in Figure 4 in comparison with the target
image. The discontinuous region in the summed image corresponds to
the boundaries to be detected by virtue of Theorem 4.2, and from the
ratio of discontinuities we can calculate the conductivity values by virtue
of Theorem 4.3, the precise formula of which can be found in [2].

5. Alternating J-substitution algorithm

The alternating .J-substitution algorithm makes use of two data which
are the magnitude of internal current density induced by Neumann data
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g1 and g2 in (4.2). Then the MREIT image reconstruction becomes the
iterative algorithm to update ¢ = a/|Vu|, which is summarized at the
end of section 2. In the paper [3], we obtained a pseudo-convergence
result on the alternating J-substitution algorithm.

THEOREM 5.1. (Pseudo Convergence) Let 4} and ugﬂ/ ® be the iter-

ative solutions with respect to the Neumann data g1 and go belonging
to L3(89), respectively. Then we have

/ﬂ (nt1 —0) { (1+72) g‘_if% } da

n+l

= /Q(Unﬂfz - o) {(1+ %) g—%}

C’rn+1
y Va2 (T2 4 )| .
nt1/2 nt1/2 z
Vg™ 7[([Vuy 7 + [Vual)

and

o 2
_/5;(0"”“/2 — o) {(1+ n-;l/Z) 2(11 }d:r

0n+1/2

) ) Oniijzy @ IVup - (Vul + Vu)|
= fon "){(” ) }{IVH?I(IVHTIHWIU -

On+1/2

PROOF. For the proof, see [3]. a

Now we turn our attention to the discretized problem. For simplicity,
let @ = (—1,1) x (—1,1). In practice, the MR image consists of N x N
pixel values, so that the data a is also given by a constant value on each
pixel. So, we divide (? into an assembly of pixels in such a way that

N-—-1
Q= J % unQ;=0 if i#j
k=0

where (2 are uniformly axis-parallel sub-rectangular elements that cor-
regspond to pixels. We imply a standard cell centered finite difference
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scheme as a technique for constructing approximate solution for the for-
ward problem
div(cVu)) =0 in,

5.1 Ou
(5.1) T = on 90, and uds =0.

au an
We assume that the conductivity in each element is homogeneous, that
is,

NZ.1

=Y orxn,
k=0

where o is a positive constant.

5.1. Cell-centered finite difference method

Let the center of the cell £2; ;5 be denoted by (z;,y;). Since u satisfies
Laplace equation on each pixel €2z,

@dszo, 0<k<N?-1,
agkav

and therefore we obtain the following approximation for 1 < i, < N -2
Ou((i + 2i41)/2,y5)  Oul(z: +2i-1)/2,y;)
(5.2) _
Oz Oz

L Oulee (ys +y541)/2) _ Buli (v; +45-1)/2) |
9y Ay ’

The interface condition between €, ;v and ;4145 can be understood
approximately

Ui+jN(u((33i + ziv1)/2,y5) — U(wz‘,yj))
RS Tiy 14N (u($i+l,yj) — u((z; +xi41)/2, yj))
and this implies

O iNul(Zy, y5) + o5 ivu{x; .
(53)  ul((mi+@ip1)/2,y5) = 2 (i, 4j) + Ti14in %+17y;r)‘
OitjN + Oip14jN
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By using the approximation (5.3), we obtain
Oul(zi +zin1)/2,y5)  W(®i+2i1)/2,y5) — u(@iy))
oz h/2
2051458 (w(@iy1, y5) — w(ws, ¥5))
h(Citin + Tig145N) '

(5.4)

By substituting the relation (5.4) and similar approximations into (5.2),
the forward problem (5.1} is converted into the linear system

(5-5) A_fu,N = bN:

where A is N? x N2 matrix and by is generated by the Neumann data
g.

5.2, Multi-level J-substitution algorithm

The number N? is the total number of pixels of MR images (usually
N = 128, or 256). If N = 256, the size of the admittance matrix A
is 65536 x 65536. For this large size matrix, it is essential to solve the
forward problem efficiently and reduce the iteration numbers until an
appropriate stopping criterion is satisfied.

In this paper, we consider the multi-level J-substitution algorithm
in which the main strategy is to incorporate the idea of using coarse
grids to obtain better initial guesses. Let us denote by QP the net
domain of {2 with the pixel size h. For using coarse grid correction,
define the transfer operators If, and I?* which are called interpolation
and restriction operators, respectively. We use two applied currents ¢,
and g, and denote the corresponding magnitude of current densities by
a} and af, respectively.

Multi-level J-substitution Algorithm

(1) Apply the restriction operator I?" recursively to the cur-

rent density a?, i = 1,2, which are given data from MRI

system with N x N components and obtain reduced vec-

tors a;”h on a coarse grid Q™" for a fixed number m.

(a) For the initial guess, choose a homogeneous conduc-
tivity og = 1.

(b) For given oy, find 47 which is the numerical solu-
tion on the domain Q™" with applied current g; and

conductivity o,.
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(¢) Update oy,41 as in J-substitution procedure

_ ot _ ot
T T T gy
2

(d) If |ony1 — 05 | < € for some measurement precision
€, stop; otherwise go back to step (b).

(2) Qmt — Qm—1h . take the conductivity initial guess by
applying the interpolation operator I,Ef;l_l)h to the iter-
ative conductivity solution & on the grid Q™. Perform
the iterative steps (b) to (d). Proceed inductively to
reach the original grid Q.

6. Numerical experiments

Let the test domain be £ = (—1,1) x (—1,1) and the current data ¢
and g» on 91 be given by

-1 if |yl <0.05and z = -1,

qiz,y) =15 1 if |y} <0.05and z = 1,
0 otherwise,
(6.1) _
-1 if |z} <0.05and y = -1,
g@(z,y)=1 1 if |z <0.05and y=1,
0 otherwise.

6.1. Toy model

It consists of four anomalies in which the relative resistivities with re-
spect to background are 0.25 in the white disk, 2 in two grey trapezoids,
and 5 in the dark ring (see Figure 5).

For practical implementations, internal current densities a; (z,y) and
az(z,y) (Figure 5) are assumed to be observation data from MRI system
which are artificially corrupted by adding 3% random noise to the com-
puted current density distributions b1(z) and b2(z) obtained by solving
the linear system (5.5);

a;i(z,y) = (14 0.03 * rand_number(z,y))bi(z,y), (z,¥) €N, i=1,2,
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£l

az{z, y)

F1GURE 5. The target to be reconstructed in toy model
and current density images a) and ap corresponding to
g1 and g described in (6.1), respectively.

1
+ 1
AT SN .
.
:
*

02 1 "
. |

El ? oz ¢« ¥ k& z uw w % B

[
iterations iterations

(a) (b)

FIGURE 6. (a) The relative L2-error and (b) Conver-
gence behavior of conductivity value on each anomaly.

where rand_number(z,y) is a uniformly distributed random number
generator in (—1,1). In this example, we take a standard conjugate
gradient method to solve (5.5) and assume 64 x 64 pixel values. The
relative L2-error defined by &, := || e — &, ||/|| & ||, where o,, denotes the
conductivity distribution at n-th iteration and ¢ is the target conduc-
tivity distribution. Figure 6 (a) plots the relative L?-error. Figure 6
(b) shows the improvement of conductivity values on each anomaly as a
function of iteration number.
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FIGURE 8. Updated conductivity images (Contour plot).

Figure 7 shows the updated conductivity image for each step by using
alternating J-substitution algorithm and Figures 8 shows the contour
lines for each updated conductivity image.

6.2. Realistic model

We test a more complicated model, which is based on a real MR
image (see Figure 10}, in order to show the feasibility of alternating J-
substitution algorithm. We take 256 x 256 mesh grid in this numerical
experiment, so it is important to use an efficient forward solver. Figures
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9 presents the current densities corresponding to the current pattern g
and g, given in (6.1), respectively.

ay(z,y) az(z,y)

Ficure 9. Current density images a; and ay correspond-
ing to g; and go described in (6.1), respectively.

-08 By 04 -02

Target Reconstructed

FIGUuRE 10. Target conductivity image and the recon-
structed image using the alternating .J-substitution algo-
rithm.

Figure 10 shows the reconstructed conductivity image in comparison
with the target conductivity image.



540 Ohin Kwon, Jin Keun Seo, Eung Je Woo, and Jeong-Rock Yoon

(1]

2]
(3]
[4]

[5]

[6]
[7]
(8]

References

O. Kwon, E. J. Woo, J. R. Yoon, and J. K. Seo, Magnetic Resonance Electri-
cal Impedance Tomography (MREIT) : Simulation Study of J-Substitution Algo-
rithm, submitted for publication.

S. W. Kim, O. Kwon, J. K. Seo, and J. R. Yoon, On a nonlinear partial differ-
ential equation arising in MREIT, in preparation.

0. Kwon, J. K. Seo, and J. R. Yoon, Alternating J-substitution elgorithm and
its convergence anelysis for MREIT, in preparation.

H. R. Gamba and D. T. Delpy, Measurement of electrical current density distri-
bution within the tissues of the head by magnetic resonance imaging, Med. Biol.
Eng. Comp. 36 (1998), 165-170.

G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, Measurement
of nonuniform current densify by magnetic resonance, IEEE Trans. Med. Imag.
10 (1991), 362-374.

, Sensitivity of magnetic-resonance current density imaging, J. Mag. Res.
97 (1992), 235-254.

, Electromagnetic considerations for RF current density imaging, JEEE
Trans. Med. Imag. 14 (1995}, 515-524.

E. J. Woo, 8. Y. Lee, and C. W. Mun, Impedance tomography using internal
current density distribution measured by nuclear magnetic resonance, SPIE 2299
(1994), 377-385.

Ohin Kwon

Department of Mathematics and Natural Science Research Institute
Yonsel University

Seoul 120-749, Korea

E-mail: oikwon@math.snu.ac.kr

Jin Keun Seo

Department of Mathematics
Yonsei University

Seoul 120-749, Korea

E-mail: seoj@bubble.yonsei.ac.kr

Fung Je Woo

School of Electronics and Information
Kyung Hee University

Kyungki 449-701, Korea

E-mail: ejwoo@khu.ac.kr



Magnetic resonance electrical impedance tomography

Jeong-Rock Yoon

School of Mathematics

Korea Institute for Advanced Study
Seoul 130-012, Korea

E-mail: jryoon@numer kaist.ac.kr

541



