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A NUMERICAL METHOD FOR THE PROBLEM
OF COEFFICIENT IDENTIFICATION OF
THE WAVE EQUATION BASED ON A
LOCAL OBSERVATION ON THE BOUNDARY

KENJI SHIROTA

ABSTRACT. The purpose of this paper is to propose a numerical
algorithm for the problem of coefficient identification of the scalar
wave equation based on a local observation on the boundary: De-
termine the unknown coefficient function with the knowledge of
simultaneous Dirichlet and Neumann boundary values on a part of
boundary. To find the unknown coefficient function, the unknown
Neumann boundary value is also identified. We recast our inverse
problem to a variational problem. The gradient method is applied
to find the minimizing functions. We confirm the effectiveness of
our algorithm by numerical experiments.

1. Introduction

In this paper, we consider the problem of coefficient identification
of the wave equation based on a local observation on the boundary.
This problem is to determine the unknown coefficient function with the
knowledge of simultaneous Dirichlet and Neumann boundary values on
a part of the boundary.

Let ! C R"™ (n = 2,3) be a bounded domain with two smooth bound-
aries I'; and I'y, satisfying I'; N I'; = @. A conventional problem is to
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find the function « such that

(52
%—v.(f(vu)zo in Qx (0, 7],
du
U=7 on FiX(O,T],
ou
\ K%=g on g x (0,7

Here we assume that the coefficient function K belongs to L*(£) and
satisfies the condition K{z) > C > 0 for all £ € §2, where C' is a given
positive constant.

Our inverse problem is to determine the unknown coefficient func-
tion K with the knowledge of a set of the Dirichlet boundary value @
and the Neumann boundary value § on the boundary I';. If a set of
these boundary values is given on the whole boundary, the uniqueness
and stability of the problem of coefficient identification were guaranteed
under the appropriate assumption [2, 3]. However, our problem is not
uniquely solvable.

The purpose of this paper is to present an algorithn for the numer-
ical resolution of our inverse problem. To find the unknown coefficient
function, we also identify the unknown Neumann boundary value on the
boundary I'y. We introduce an object functional to be minimized, then
our problem is recast to a variational problem. We adopt the direct vari-
ational method using the gradient method. We confirm the effectiveness
of our algorithm by numerical experiments.

2. Variational method and numerical algorithm

2.1. Variational method

Let V be a convex subset of L>°(Q2) characterized by
Vi={KeL®Q)|K(z)>C>0 forall z=c}.

We denote that the function u[K, g] is the solution of the initial-boundary
value problem (1) with the coefficient function K and the Neumann
boundary value g on I'y. The unknown coefficient function K and the
unknown Neumann boundary value ¢ on I'y are determined by minimiz-
ing the functional F : V x L¥ 'y x (0,7]) — Ry := [0, oc), defined
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T :
F(K,g) = /0 fr lqlK, ] -3 dsdt,

M . The function K is a solution of
I px(01)

our problem if F(K,g) = 0. However it is difficult to find one of the

minima of the functional F directly, because two unknown functions K

and g are involved. We notice that K and g are mutually independent.
To find the minimal K and g, we make use of the gradient method:

For =0,1,2,...... '

where ¢[K,g] := K

(@) Kjv1 = Kj —a;rj,  gj11=g; — Bjs;,

where r; and s; are the search directions. The search direction r; is
determined by using the projected gradient method:

ri(x) = Kj(x) — P(K; — Fx(Kj, g;)){(T),

where
e - {59 56125

Here Fx (K, g) means the first variation with respect to the function K,
defined by

F(K +0K,g) — F(K,g) = (Fk(K,g), 6K)a + o([|6K]|a},

(. V= [ vz, el = ( I |<.a12dw)%.

We can guarantee that the updated coefficient function K; generated by
(2) belongs to V if the initial coeflicient function Ky belongs to V' and
the step size 0 < oy < 1.

We make use of the steepest descent method to determine the search
direction s;:

where

S.’j(m! t) = FQ(KJ-+1) gj‘)(m: t):

where Fy(K, g) is the first variation with respect to the function g, de-
fined by

F(ng +59) - F(Kag) = (FQ(K:Q)Jag)PdX(U,T) +o (llég”FdX(O,T)) s
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where

(f, Pryxom f f gds dt,

Ly
| Fllraxco,1) = (f / Fik dsdt)

To implement this method, we must know concrete expressions of the
first variations Fy and Fg.

2.2. First variations

First, we will try to obtain the first variation Fx. We take any
admissible g, and fix it.
Let v be the solution of the initial-boundary value problem

(&% )
w—V(KV'U)=O IHQX[O,T),
v=w,a—1;:0 on 2 x {T},
3) < g,
v = gKa——E) onT; x [0,7),
\ KZ‘?TL:O on 'y x [0, T},
where the function w is the solution of the boundary value problem
V- (KVw)=0 in £2,
Bu _
6‘w
Bn =0 on [y

For K € V and K + 6K € V, we notice that

T T
(5) F(K +46K,g) — F(K,g) =/ f vdqr dsdt +f f |6qxc|? dsdt
0 r; ] Ty

where dqx := q|K + 6K, g] — ¢(K, g].

_ dulK + 4K, g
Since (K + JK)Tlex(O,T)
notice that

f /fuéqxdsdt f f { gux | sy OUK +‘5K’g]}dsdr,
; a0 on an

Ou[K, g]
~ K5 oy = 0 e
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where duy = u[K + 6K, g] — u[K, g]. Since Ka

dn =0

Ty x{0,T)

and 5'”‘K|I‘,-><(0,T) = 0,

T
/ f U(K%’”K ) dsdt
0 Jog on

T T
= —f /V-(KVU)JuKda:dt+/. va-(KVéuK)da:dt.
0 19 0 Q

Moreover we can get the following relation:

(7) /OT /mv (51{%) dsdt

T T
=/ f&KVv-Vu[K,g]d:rdt+/ /JKVv-VcSuKdmdt
0 Jo 0 Jo
T
+f va-(JKVu[K—i—éK,g]) dxdt.
o Ja

Accordingly from (6} and (7), we have

T
(8) //Uéqxdsdt
0 Jry

T T
= [ fﬁKV'u - Vul[K, g] dwdt-!—/ deVU-V(SuK dzdt
0 J 0 Ja

T T 2
- f / V - (KVv)bug dzdt + / UM# dzdt.
0 Ja o Jo Ot

Since dug (-, 0) = &dux(-,0) = 0, it holds that

2
ff aéuKd dt—/ 6‘5““’ T)dz +/ fat25u;<dmdt

Hence, from (8) and (9), we have

(10) F(K +d0K,g) — F(K,g)

T
= f /JKVU-Vu[K,g]d:rdt—i-/waéuK(-,T)dm
0 Ja Q ot

T T
+/ /JKVU-VéuKdJ:dt-i-/ / |6qxc|® dsdt.
0 Q 0 I';
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Under the appropriate assumption, we can guarantee that
watfu K
qQ Ot

T
f f (Sax ? dsdt = o (5K [l0)
0 T

(:T)dz = O (6K |la),

T
] / §KVu - Viug dzdt = o (||6K||q) -
o Ja

To get the concrete expression of the first variation, we need to calcu-
late the third term of the right hand side of (10). However it is difficult
to analyze this term further. Consequently we introduce instead the

approximate first variation Fx, defined by

T
Fr(i,9)i= [ V(1) Tulkgl(- 0.
0
The search direction r; is then replaced as follows:

ri(®) = Kj{z) - P(K; — Fg(Kj}, ;) ()
We will try to get the concrete expression of the first variation Fj.
We take any admissible KX € V, and fix it. In the same way as in (10),
we can get the relation

F(Kig+6g) _F(Kag)

T
—/ / vdgdsdt—%—/ 35”9 T) dz +/ f|5qg|2dsdt
4] Ty Q

where dug = u[K, g + &g] — u[K, g] and dq, == g[K, g + dg] — ¢q[K, g].
Under the appropriate assumption, we can guarantee that

dou
w 8t9 (-, T)dx = O(||0gllr,x0,m)

Q

T
| [ 1605 dsdt = ol xiory)

Therefore we notice that
F(K, g+ 8g) - F(K,9) f f v dsdt + O(|0gllrx(o):

Similarly to the case of F, it is difficuli to get the concrete expression
of the first variation F,. Therefore we introduce the approximate first
variation instead, defined by

Fo(K,g) = _U|I‘dx(0,T)'
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Using E‘; the search direction s; is now determined by

sj{w,t) =F o(Kj+1,95)(x, 1)
2.3. Numerical algorithm

To implement the gradient method, we must choose the step size o
and §;. We employ the Armijo criterion[1] for this purpose:

Armijo eriterion
Given the parameters £ (0 <& < 0.5), 7 (0 <7 <1} ande > 0.
(i) If |r;lle < &, then stop; else go to next step.

(i) nm = 1.
(iil) Form=0,1,2,......: If

F(Kj —nmr;,9i) < F(Kjagj)ﬁénm/s;ﬁ((ffjagj)?”j dz,

then a; := Ny, else i1 = Thm.

For choosing the step size 3;, we also use the Armijo criterion.
Thus in order to solve our inverse problem, we can summarize the
algorithm as follows:

Numerical algorithm

1. Pick an initial coefficient function Ky € V and an initial Neumann
boundary value g.

2. For j=0,1,2,
(a) Solve the initial-boundary value problem (1} with K; and g,.
(b) Solve the boundary value problem (4) with K.
(¢) Solve the initial-boundary value problem (3) with K.
(d) Calculate the approximate first variation

T
Fr(Kj,9i) = f VulK;,g;] - Ve dt.
)

(e) Set the search direction: r; := K; — P(K; — F‘;}(Kj,gj)).

(f) Choose the step size a; by using the Armijo criterion.

(g) Update the coefficient function: K; 11 = Kj — a;r;.

(h) Solve the initial-boundary value problem (1) with K;1, and

(i) SoIve the boundary value problem (4) with K, 1.

(j) Solve the initial-boundary value problem (3) with K;1.
(k) Set the search direction: s; := —v|r,x(0,7)-

(1) Choose the step size 3; by using the Armijo criterion.
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(m) Update the coeflicient function: g;4+1 = ¢; — 53;5;.

3. Numerical experiments

In this section, we show a numerical example about our algorithm.
We take the example as a bench mark test within the following frame-
work:

1. Let £ be a unit disk and T = 4.0.

2. The corresponding Dirichlet and Neumann data are generated by
solving numerically the initial-boundary value problem with the
following data: The domain is a circle with radius 3.0. The initial
and Neumann boundary values are set to

{ﬁnl2&ﬂw%%+m%—2® (1< /22 +22 <26, z3 > 0)

0.0 (otherwise)

and 0.0, respectively.

3. The initial-boundary value problems in our algorithm are solved
numerically by using the Newmark method for time integration
with linear triangular finite elements in space.

4. The domain is divided into triangular mesh as shown in Figure 1.

5. The exact coeflicient function K is set as in Figure 2:

K(z1, 32) = 20 (0< \/1:91 —{—51:22 < 0.25)
PTTL0 (025 < AT+ e < 1.0)
6. Let €' = 0.9, and the initial estimates are set as Ky = 1.5 and
g =0.0.

i

- =
Fig. 1. Finite elements Fig. 2. Exact coeflicient K

First, we suppose that

I; = {(cosﬂ,sinﬁ) | — g‘n' <g< g‘ﬂ'}



A numerical method for coefficient identification 517

After 30 times of iterations, we have F = 5.38 x 1073, The calculated
coeflicient function is shown in Figure 3. Figure 4 shows the distribu-
tion of the relative error. This calculated coefficient function is in good
agreement with the exact one.

An 1l
I

......

Ll % [ _all
-1 -0.5 1] 0.5 1 -1 -0.b 0 0.6 1

Fig. 3: Calculated K Fig. 4: Relative error

In the previous experiment, the boundary values were given in a wide
range of the boundary. The boundary I'; is set anew as

T; = {(cose,sina) lo<o< g}

After 30 times of iterations, we have F = 2.96 x 10~2. Figure 5 shows
the calculated coefficient function. The distribution of the relative error
is shown in Figure 6. This calculated coefficient function becormes worse,
but it is still in good agreement with the exact one for the region 2 > 0.

= — —

2]

0.8

M ] ]
-1 -05 0 0.5 1 -1  -05 0 0.6 1

Fig. 5: Calculated K Fig. 6: Relative error

Third, we consider the case of

I'; = {(cos8,sin §) §g <8< %w}.

After 30 times of iterations, we have F' = 7.66 x 102, The calculated
coefficient function is shown in Figure 7. Figure 8 shows the distribu-
tion of the relative error. This calculated coeflicient function becomes
deteriorated.
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Fig. 7: Calculated K

4. Concluding remarks

We presented a numerical algorithm for the problem of coefficient
identification of the scalar wave equation based on a local observation.
To find the unknown coefficient function, the unknown Neumann bound-
ary value on a part of the boundary is also identified. To determine the
unknown functions, we make use of the direct variational method. Our
numerical algorithm is based on minimizing the functional by the gra-
dient method. We introduce the approximate first variations because it
is difficult to get concrete expressions of the exact first variations. By
numerical experiment, we confirm that our algorithm is effective when
the boundary values are given in a wider range of the boundary.

In our algorithm, we do not use the gradient method exactly, because
the search directions are constructed by using approximate first varia-
tions. We will investigate theoretically in the future that our method
has the convergence property in similar as the conventional gradient
method.
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