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DETERMINATION OF TEMPERATURE
FIELD FOR BACKWARD HEAT TRANSFER

Juun Liu

ABSTRACT. Consider an inverse problem of determining the 2-D
temperature distribution from known temperature given at some
time T > 0. Our aim is to find the temperature for 0 < t < T. For
this backward heat conduction problem, we give a stable method to
determine the temperature from the measurement data with error
pollution. Furthermore, the convergence rate of our approximate
solution is also given. Numerical results illustrating our method are
also presented.

1. Introduction

Consider a bounded domain 2 C R? with piecewise smooth boundary
JQ. We assume there do not exist any heat source and heat sink within
the medium, and the temperature at boundary 0€ is prescribed. If the
initial temperature at time t = 0 is also given, then the temperature
field T'(z,t) in t > 0 is governed by the following system:

a 32—1 {k(xlst)"g?Tl] + 3%2 [k(xhﬂﬁz)g%]

(1.1) (z,t) € 2 x (0, 00)
T(z,t) = Ty(z,1) x € 0%
T(z,0) = fi(z) T €,

where we set & = (21,22} € Q, k(z1, x2) is the medium parameter. The
temperature I'(z,t) in ¢ > 0 can be determined from this system by
classical method.
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However, we can also meet the other situation in practice; for example
the temperature is not known at the initial time ¢ = 0, but at some final
time ¢t = Ty > 0. We also want to determine the temperature T'(z,t)
for 0 < t < Ty. This problem is the so-called backward heat conduction
problem. In this problem, we should solve T'(z,t) from

‘%T = 32—1 [k(ml,scz)%] + %'[k(wl,xg)%]

(.’E, t) € £l x (O,To)
T(z,t) = Tb(m,t) redte (O,Tg)
T(z,Tg) = ha(z) z €S}

to get T(x,t) from known hi(z), Tp(z, t), k{x). It is well known that this
problem is ill-posed in the following sense([5}): )

(1) the solution to (1.2) may not exist for some given k(). From
physics point of view, this implies that not all the function h; (z) can be
considered as the final temperature distribution from the forward heat
conduction system;

(2) even if there exists some T'(z,t) solving (1.2) for hi(z), then
T(z,t) does not depend on h;(x) continuously.

This property makes it very difficult for us to solve the temperature
field from the final measured temperature data with error. That is, if
there is a little error in our ‘measurement for final temperature, which
is impossible to avoid in practice, then solving (1.2) to get the temper-
ature distribution by classical method may lead to a solution with error
arbitrarily large. From the physics point of view, this solution is non-
sense. For other inverse problems related to heat transfer problem, we
refer as [3] which gives us some basic physics background for this inverse
problem. _

This problem can be simplified without any substantial change for
its difficulties. Firstly, to illustrate our methodology for this inverse
problem and to avoid coinplicated mathematical analysis, we assume
that the thermal conductivity k(z) = 1, more discussions on the equation
with variable coefficients may be found in {2]. Secondly, by letting

T(z,t) = w(z,t) + u(z,t)

and determining w(z,t) from the following forward heat transfer prob-
lem

(1.2)

%%:Aw (z,t) € £ x (0, 00)
(1.3} w(z,t) = Tp(z, t) xr €082

w{z, 0) = wo(z) z € 2,
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for some initial temperature wq(z) given appropriately, we know the new
temperature field u(z,t) should satisfy

G = Au (x,t) € @ x (0,00)
(1.4) u(z,t) =0 z € 00

u(z,0) = fi(z) — wolz) = f(=z) z el
for the direct problem and

% = Au (z,t) € 2 x(0,T)
{1.5) u(x,t) =0, x € 00

u(m, )= h‘l(m) — wo(z, TO) = g(m) z € )

for the backward heat transfer problem. Here and henceforth, for sim-
plicity of the notation, we denote by T' the final time, rather than T in
(1.2).

In this paper, we consider (1.4) and (1.5) directly. Firstly, for initial
temperature distribution f{z) € L%(Q), (1.4) defines a map K

(1.6) K: Kf(z)=u(zT).

We denote by u(g)(z,t) the solution to (1.5) if it exists, and we mea-
sure the temperature by

ool = ([ lu(m,tn?dm)m, Il = ( / |g(m)|2dx)m.

Now we can reveal the difficulty for the backward heat transfer prob-
lem stated above clearly from the following result and example for our
simplified model.

THEOREM 1.1. If u(z,t) solves (1.5), then it satisfies

2 X
0Dl oo (BITEEE )

forany 0 <t <T.

PROOF. Define F(t) = |[u(t)|| for any t € [0,7]. It is easy to show
(In F(¢))” > 0 by simple calculation. In fact,

)

ot

?

) =2f | utds, F&) =4
Q
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which implies F(t)F"(t)—(F'(t))? > 0 from Schwarz’s inequality. There-
fore In F(t) is a convex function in (0,7T). Now the Taylor’s expansion
for In F(t) at t = T says

F(T)
F(T)

from which we get (1.7) immediately since

F(T) = -2 /Q | 9()Pde

by simple calculation. |

InF(t) > F(T)+

(t-T)

Especially, let Q = [0, 7] x [0,7] and gn(z) = & sin(Nz1)sin(Nz).
Then, by direct calculation, we know from the above theorem that
2

@) 2 oo (- -0).

We can always choose N large enough such that ||un ()| large arbitrarily
and ||gn| = & small enough.

This example shows that if we know some error data gs(z) of go(z)
satisfying

{1.8) ligs — goll < &,

then the exact solution u(gs) to (1.5) may be far away from u{gp) arbi-
trarily. Therefore an interesting problem is how to get the approximation
of up(go) from the error data g satisfying (1.8}, if we have known that
the exact solution up{gg) to (1.5) corresponding to g = go exists.
Essentially, this problem can be considered as solving some integral
equation of first kind with smooth kernel. To get the approximate solu-
tion for such kind of equation from the error data, some regularization
technique has been used both in theoretical analysis and in practical ap-
plication. In this method, one takes the minimizer of some regularized
functional as the approximate solution. However, there are two major
difficulties in this method. On one hand, in order to guarantee the exis-
tence of exact minimizer, the error data gs{z) should lie in some range
domain related to operator K, this condition is hard to verify in prac-
tice. On the other hand, the choice of regularization parameter needs
some special technique to guarantee the convergence of the approximate
solution. In this paper, by applying some conditional stability result,
together with the new strategy for the choice of regularized parameter
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proposed in [1], we propose a new stable method to construct the temper-
ature field from error data of go(x). The convergence rate is also given.
Our method relax the restriction on measured data. The key point is
to give an approximate minimizer fs(z) of some regularized functional
from the error data gs, then solve the corresponding forward heat trans-
fer problem taking fs(x) as the initial value. Finally we prove that such
an approximate solution approaches to u(go)(z,t) for 0 <t < Tasé — 0
and the convergence rate is Holder type. However, it is very interesting
we still do not know whether or not fs(z) — up(z,0) as § — 0. A similar
problem is discussed in [6] where the approximate solution is constructed
in terms of the filtering method which truncted the large eigenvalues of
the direct problem. For numerical solutions applying SOR method, we
refer to [4].

2. Main result

For exact final temperature g(z) = go(z) given at £ = T > 0, we
assume there exists a solution wug(z,t) to (1.5). This means the final
temperature is meaningful. Now if we get the measured data g5 of go
with the error level § > 0 in the sense of {1.8), we want to give a method
to find the approximate temperature distribution us{x,t) before time T
from the error data gs. Of course, it should satisfy

us(x, t} — ug(z, t)

in some sense for all £ < T in case of § — 0, if the approximate solution
is reasonable.

Suppose we have an upper bound of the exact solution ug(z,t) at
time t = 0, say, [|ug(0})] < mg for some known constant mgy > 0. We
denote by fo(z) the initial temperature of ug(z, t), i.e., fo(z) = uo(x,0).
Furthermore, define a functional

(2.1) Fif) = |Kf - gs)® + e FI?

over L*(Q), where |.} is the LZ—norm in Q.

THEOREM 2.1. For any CZ > mi + 1, there exists an approximate
minimizer fs(z) for functional FJ,(f) over L*(Q?) which satisfies

(2.2) ng(.fé) < 0352,
(2.3) WK fs — K fol| < (Co+1)é
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and fs(z) can be solved from a known linear equation which contains §
and gs(z).

THEOREM 2.2. For fs(z) € L*(Q}) generated in the above theorem,
we solve the forward heat conduction problem (1.4) with f(x) = fs(x)
to get the approximate temperature ug(z,t). For such a approximate
solution, it holds

(2.4) (us — o) ()| < 2(mq +2)%6T
forall 0 <t<T.

REMARK 2.3. The two results stated above give a stable method to
determine the approximation of ug(x,t) from the error data gs. Further-
more, the second result also gives convergence rate. Notice, the estimate
for convergence is true but nonsense at ¢ = 0, it gives no information
about the convergence of ug(x,0) to ug(z,0). In other word, our esti-
mate is valid only in ¢ > 0. To get an estimate up to ¢ = 0, we should
modify the regularized term in functional Fcf, and give a more strong
bound for ug(z,0). This problem will be discussed furthermore([2]).

REMARK 2.4. The only information in our method is the up bound
of the exact solution wug(x, ) at ¢ = 0. The constant my is not difficult
to get in many cases. Further, our estimate gives the error bound by
mg and & explicitly. From the convergence rate, we know that us(z,t)
converges to ug(z,t) fast near ¢ = T and slowly near £ = 0. This is
reasonable from the physics background.

3. Conditional stability and convergence rate

Firstly, we define function set
o = {p(z,t) 1 B(.,t) € L3(Q) for any fixed t ¢ (0,T),
¢(x,.) € L*[0,T) for any fixed z € Q, ||¢(0)]| < m}

for some known constant m > 0. Then it holds

THEOREM 3.1. Assume that u;(x,t) solves (1.5) withg=g; fori =
1,2. Then

(3.1) (w1 — u2) (@) < (2m)1 =T flg1 — g7 .
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Proor. Firstly, we can show that if the solution u(x,t) to (1.5) lies
in uy,,, then

(32) lu(®)]] < (2m)*=T [|g)/"
for all ¢ € [0,T). In fact, since In F(¢) is convex, then we get
In F(Btl + (1 - G)tg) < 911’1F(t1) + (1 — 9) In F(tz)

for any 8 € [0,1} and #1,t5 € [0,7]. Taking # =¢/T and ), = T',t3 =0
generates the result immediately from the definition of set jty,.

Now take u(z,t) = wy(z,t) — uz(z,t) which solves (1.5) with g =
g1 — g2 and |[u(0)]] < [[u1(0)]| + ||u2(0}|] € 2m, the proof is complete
from (3.2). O

Now Theorem 2.1 can be proved from the above theorem. Firstly, it
is obvious that

Fi(fo) = K fo—gsl*+ 8 1fl?
(3.3) = |igo — g5l + &% || fol?
< 8% 4 més?
= (m% + 1)52:

which implies {f : ng(f) < C36%} # B due to CZ > mi + 1. Hence (2.2)
is proven. From this inequality we also know

(34) 1 fsll < Co,

(3.5) K f5 — g5l < Cod.

Therefore we get
1K fs — K folt < 1K fs — gsll + ll9s — K foll < (Co + 1)é.
So we get (2.3). Since the exact minimizer of functional ng( f) over
L3(Q) satisfies
(3.6) (3°I + K*K)f = K*gs,

then f5{x) can be solved from this equation approximately, where K™ is
the adjoint operator of K. In our problem, it is easy to see K* = K.
Hence Theorem 3.1 is proved.

REMARK 3.2. The estimate (2.2) gives an error level for us to solve
(3.6) approximately. That is, it is enough for us to get the approximate
solution to (3.6) such that it satisfies (2.2).
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Now we prove Theorem 2.2. For certainty, we fix Cy = mp+ 1. Since
us{z,t) solves (1.5) with f = f;5, we know from (3.4) that us{z,t) €
Pmo+1- On the other hand, it is obvious that ug(z,t) € thng C Mme+1s
therefore the conditional stability in Theorem 3.1 tells us

(s —wo)(O < 2(mo + 1) | K f5 — K foll /7
(3.7) < 2(mo+1)[(Co + 1)8]/T
< 2(mg 4+ 1)(Co + 1)84T
< 2(m0+2)25t/T,

the proof is complete.

4. Derivation of operator K

In order to get the approximate minimizer fs(x), one possible way
is to solve the linear equation (3.6). Here we derive the expressions of
K. Of course, one can also get fs(z) by other method such as New-
ton iterative method. However, the expression for operator K is also
necessary.

The basic idea to get operator K comes from the method of variable
separation. Suppose that {\,, un(z)}52, satisfies

{—Aun(m) = Antn(z) z €N

(4.1) up(z} =0 x € 08

We know that 0 < A; < Ap < ... < Ay < oo = 400 and {u,(z)}02, is
a basis of L2(2). Without loss of generality, we assume |Ju,| = 1. For
given f(x) € L%(Q), we know

o0

(4.2) u(z,t) = Z cn exp{—Ant }un(2x),

n=1

where the coefficient
(4.3) Cn = /Q F@)unly)dy

forn =1,2,.... Now taking ¢t = T"in (4.2) and inserting ¢, into (4.2) get

(44) Kf(z)=u(z,T) = fn (Z exp{—AnT}un(w)un(y)) f(y)dy.
n=1

This is the expression for operator K. In some special cases such as )

being a rectangle or a cycle, {\,,u,(z)} can be written out explicitly.
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5. Numerical implementations

To test the validity of our method we consider two examples. Firstly,
we set {2 = [0, 7] x [0,#] and

(5.1) fo(z) = sinz; sinxs

for x = (z1,x2) € (. Then the exact solution to the direct problem
(1.4) is

(5.2) up(z,t) = e~ sin 1 sin Z9

for 0 <t < T and the final value of temperature at time ¢t = T for (1.5)
is

53 go(x) = upla, T =e_2Tsina:1 sin €.
(5.3) (z) (z,T)

We generate the noisy inversion data by

(5.4) ¢*(z) = gole) +n(z) >,
where —1 < 75(z) < 1 is some random function. We will solve the
approximate temperature u‘s(m,t) from noisy data ¢°(z) applying the
method proposed in this paper and verify the validity of our method, by
comparing our numerical solution with the exact solution.

According to the argument in the last section, we can express the
solution to (1.4) in terms of the eigenvalues and eigenfunctions from
which we get

(5.5) Kf@)= [ Ao sT)f(:)dz,

69 K@ - | (/Q H(w,y;T)Hw,z;T)dy) F(z)dz
= LH(m,z,ZT)f(z)dz

with the kernel function

(5.7) H{z,y;T)

4 o= 2z . . . .
= = E e~ (WA (sin ng) sin mas)(sin ny; sin mys;).
T
n,m=1
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Noticing K* = K, we ai)ply (5:5)-(5.7) in solving the Euller equation
(3.6). Then for known f(x), we apply the series

(5.8) (z,t) = Z Cn,m _(" tm )t(sinnml sinmza)

n,m=1

with the coeflicients
4 , .
(59) Com = 75 | £5(0)(sin g sin )y

to get u®(z, ). For the infinite series, we choose the first 10 terms as an
approximation.

Now we divide the interval {0, 7] into N subintervals with the nodal
points #/ = (j — 1) *x /N for 7 = 1,2,..., N + 1, and treat the integral
terms by

N
ff(ml,mg)dmldmz = (%)2 Z f(:z:{,:r:’z“)
Q k=1

to get a linear algebra equations with the unknowns f9(az!, zk).
Under the above configurations, the discrete form of (3.6) is

N
(5.10) Prmy+ (5) 3 Hmig k26, R)
Fk=1

N
= (%) 3 HOm kTG,
ik=1

which is a linear algebra equations with respect to f%(I,m) for I,m =
1,2,..N + 1, where we set

FPm) = (el a8); ¢ k) = 6°(d, ),
H(l,m; 4, k; T) = H(zh, 28 2, 25; T).
The unknowns f 5( 7, k) in this linear system have double subscripts which
are not convenient in solving this equations. We establish a 1-1 corre-

spondence between double subscripts (7, k) and single subscript mm by
following rules:

mm=j+ (k—1)(N+1),

(. k) = (N+1, %) if 77} is an integral
% (mm [N+1] (N+1), [Fﬂ] + 1) if %7t is not an integral,
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where [.] denotes the integral part. Now the linear equations read as

N2
(5.11) 82 8 (mm) + Z H2(mm; nn) f(nn)

nn=1
N2
= Z H1i(mm;nn)g® (nn)

nn=1

for mm = 1,2, ..., (N + 1)?, where
T2 _—
Hl(mm!nn) - (F) H(l,m,j,k),T),
H2(mm;nn) = (W)ZH(I m; j, k; 20T)
H - N H !'Jy H .
When f°(nn) are solved from this linear equations, u’(z,t) can be ob-

tained from (5.8) and (5.9) approximately.
More precisely, (5.11} can be rewritten as

(N+1)? N?
(5.12) Y Clm,n)f’(n) =) Hl(m;n)g’(n)
n=1 n=1
for m = 1,2,..., (N + 1)2, where the coefficients
0 N24+1<n<(N+1)?
(5.13) C(m,n) = ¢ H2(m,n) 1<n< N% m#n,

H2(m,n)+8 1<n<N? m=n
forlSmSNg, and

H2(m,n) 1<n<N?
(5.14) C(m,n) = { 0 N?+1<n<(N+1)2 m#n,
62 Nl+1<n<(N+1)%,m=n

for N2+1<m< (N+1)~4

In the first example, we take f(x) = sin(x))sin(xs) and N = 15,6 =
0.00001, T = 1. The error date that the iteration procedure for solving
linear equations stoped is ee = .0001. By 249 iterations, the numerical
results at some nodal points and the error at some time layers t =
kt = T/N are listed in Tab.l. Notice, the initial value, as well as the
corresponding solution ug(z,t), is small in this example.
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Tab. 1 Recovery of ug(z,t) = e~ 2t sin 1 sin o

(k1,k2,kt) | real up{kl, k2, kt) | inve uo{kl, k2,kt) || kt | err(kt)
2.6,1 1629221 1623722 ‘1| .01786
2,6,16 0363528 0359883 3 | .01378
2,10,8 0888484 0877896 5 | .01085
2,14,1 0765179 0748262 7 | .00868
2,14,16 0170734 0168690 9 | .00702
6,10,8 3700849 .3656209 11| .00570
6,14,1 3187239 3116328 13 | .00465
14,14,1 .1496916 1462723 19 | .00254

In order to illustrate the validity of our method for large initial value,
we also consider another function f(x) = 10sin(x;}sin(xz). The numer-
ical results after 286 itertions for linear equations are given in Tab.2
where we also set N = 15 and 4 = 0.001. Notice, for the initial temper-
ature distribution large enough, our numerical inversion results are quite
satisfactory. On the other hand, if we choose N large, the results are ex-
pected to be more exact. In the above examples, we divide time interval
[0, 7] into 20 subintervals and set n(x?,z%) = (—1)7** for simplicity.

Tab. 2 Recovery of ug(z,t) = 10e=% sinx sin x5

(k1,%k2,kt) | real uo(kl, k2, kt) | inve ug(kl, k2, kt) || kt | err(kt)
2,6,1 1.6292210 1.6327300 1 | .12600
2,6,16 .3635284 3617875 3 | .08807
2,10,8 .8BBE4841 8824583 5 | .06434
2,14,1 7651787 7517892 7 | .04883

214,16 1707344 .1695681 9 | .03814
6,10,8 3.7008490 3.6752100 11 | .03037
6,14,1 3.1872390 3.1310210 13| .02447
14,141 1.4969160 1.4696230 19 | .01321°

From the numerical results err(kt), we know our inversion error -
[[{(uo — us)(#) | is monotone with respect to ¢, which concides with our
theoretical result (2.4).

Finally, we point out that the method proposed in this paper can
be applied to treat with the backward heat transfer problem for more
general mathematical models.
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