References
- Applicable Analysis v.27 Stable Determination of Conductivity by Boundary Measurements G. Alessndrini
- Boll. Union. Mat. Ita. v.3A no.7 Remark on a paper of Bellout and Friedman G. Alessndrini
- J. Diff. Equatations v.84 Singular Solutions of Elliptic Equation and the Determination of Conductivity by Boundary Measurements G. Alessndrini
- Trans. of Amer. Math. Soc. v.347 Local Uniqueness in the inverse problem with one measurement G. Alessndrini;V. Isakov;J. Powell
- SIAM J. of Appl. Math Soc. v.58 no.4 The inverse conductivity problem with one measurement;bounds on the size of the unknown object G. Alessndrini;E. Rosset
- Proc. Amer. Math. Soc. v.128 Optimal size estimates for the inverse conductivity problem with one measurement G. Alessndrini;E. Rosset;J. K. Seo
- Proceedings of Symposia in Pure Math. AMS v.43 Multidimensional inverse scatterings and nonlinear partial differential equatations, in Psedofferential operators and Applications R. Beals;R. R. Coifman
- Proc. Amer. Math. Soc. v.122 The inverse conductivity problem with one measurement;uniqueness for convex polyhedra B. Barcelo;E. Fabes;J. K. Seo
- Archive Rat. Mech. Anal. v.101 Identification problem in potential theory H. Bellout;A. Friedman
- Trans. Amer. Math. Soc. v.332 Inverse problem in potential theory H. Bellout;A. Friedman;V. Isakov
- Comm. in PDE v.22 Uniquenes in the inverse conductivity problem for nonsmoth conductivity in two dimensions R. M. Brown;G. Uhlmann
- Seminar on Numerical Analysis and its Applications to Continuum Physics On an inverse boundary value problem A. Calderon
- SIAM J. Sci. Comout v.20 A nonlinear primal-dual method for total variation-based image restoration T. Chan;G. Golub;P. Mulet
- Ann. of Math. v.116 L'intetegrale de Cauchy definit un operateur bournee sur L² pour courbes lipschitziennes R. R. Coifman;A. Mclntosh;Y. Meyer
- Inverse Problems v.14 Identification of conductivity imperfections of small diameter by boundary measurements;Continuous dependence and computational reconstruction D. J. Cedio-Fengya;S. Moskow;M. Vogelius
- Ann. of Math. v.120 A boundedness criterion for generalized Calderon-Zygmund operators G. David;J-L Journe
- Proceedings of A. M. S. v.115 On a regularity theorem for Weak Solutions to Transmission Problems with Internal Lipschitz boundaries L. Escauriaza;E. B. Fabes;G. Verchota
- Acta Math. v.141 Potentiasl Techniques for boundary value problems on C¹domains E. B. Fabes;M. Jodeit;N. M. Riviere
- SIAM J. of Applied Math. v.59 no.5 Inverse conductivity problem;error estimates and approximate identifiction for perturbed disks E. Fabes;H. Kang;J. K. Seo
- Indiana Univ. Math. J. v.38 On the uniqueness in the inverse conductivity problem with one measurement A. Friedman;V. Isakov
- Arch. Rat. Mech. Anal. v.105 Identification of small inhomegeneities of extreme conductivity by boundary measurements A. Friedman;M. Vogelius
- Introduction to partial differential equatations G. B. Follad
- Inverse Problems v.6 On the inverse conductivity problem with one measurement V. Isakov;J. Powell
- Med. Biol. Eng. Comp. v.36 Measurement of electrical current distribution within the tissues of the head by magnetic resonance imaging H. R. Gamba;D. T.; Delpy
- A uniqueness theorem for an inverse boundary value problem in two dimensions H. Gang
- Inverse Problems v.17 Recovery of an inhomogeneity in an elliptic equation H. Kang;K. Kwon;K. Yun
- Inverse Problems v.12 Layer potential technique for the inverse conductivity problem H. Kang;J. K. Seo
- J. Korean Math. Soc. v.12 On stability of transmission problem H. Kang;J. K. Seo
- SIAM J. of Applied Math v.59 no.5 Inverse conductivity problem with one measurement;uniqueness for balls in R³ H. Kang;J. K. Seo
- Inverse Problems v.15 Identification of domains with near-extreme conductivity;glabal stability and error estimates H. Kang;J. K. Seo
- Jour. Korean Math. Soc. uniqueness and non-uniqueness in the inverse conductivity problem with one measurement H. Kang;J. K. Seo
- Inverse Problems and related fields v.15 Recent Progress in the inverse conductivity problem with single measurement H. Kang;J. K. Seo
- Inverse Problems v.13 Numerical identification of discontinuous conductivity coefficients H. Kang;J. K. Seo;D. Sheen
- SIAM J. of Math Anal. v.13 Inverse conductivity problem with one measurement;Stability and estimations of size H. Kang;J. K. Seo;D. Sheen
- E. Kim
- On a nonlinear partial differential equation arising in MREIT S. W. Kim;O. Kwon;J. K. Seo;J. Yoon
- Comm. Pure Appl. Math. v.37 Determining by conductivity by boundary measurements Kohn R;Vogelius M
- Simulation Study of J-Substitution Algorithm O. Kwon;E. Woo;J. Yoon;J. K. Seo;Magnetic Resonance Electrical Impedence Tomography(MREIT)
- Inverse Problems Total size estimation and idenfication of multiple anolaies in the inverse electrical impedance tomography O. Kwon;J. K. Seo
- A real time algorithm for the location search of discontinuous concuctivites with one measurement O. Kwon;;J. K. Seo;J. Yoon
- Comm. Pure Appl. Math. v.42 Determining anistropic real-analytic conductivities by boundary measurements J. Lee;G. Uhlmann
- Illinois Jour. of Math. Symmetry of a Boundary Integral Operator and a Characterization of a Ball M. Lim
- Forum Math v.12 Electrostatic characterization of spheres O. Mendez;W. Reichel
- Ann. Math. v.128 Reconstructions from boundary measurements A. Nachman
- Ann. Math. v.143 Global uniqueness for a two-dimensional inverse boundary value problem A. Nachman
- Arch. Rational Mech. Anal. v.137 Radical symmetry for ellitptic boundary-value problems on exterior domains W. Reichel
- IEEE Trans. Med. Imag. v.10 no.3 Measurement of nonuniform current density by magnetic resonance G. C. Scott;M. L. G. Joy;R. L. Armstrong;R. M. Henkelman
- J. Mag. Res. v.97 Sensitivity of magnetic-resonance current density imaging G. C. Scott;M. L. G. Joy;R. L. Armstrong;R. M. Henkelman
- IEEE Trans. Med. Imag. v.14 Electromagnetic considesration for RF current density imaging G. C. Scott;M. L. G. Joy;R. L. Armstrong;R. M. Henkelman
- J. Four. Anal. Appl. v.2 no.3 A uniqueness result on inverse conductivity problem with two measurements J. K. Seo
- Proc. Amer. Math. Soc. v.115 no.4 A Characterization of the sphere in terms of single-layer potentials H. Shahgholian
- Comm. Pure Appl. Math. An anistropic inverse boundary value problem J. Sylvester
- Comm. Pure Appl. Math. v.39 A uniqueness theorem for an inverse boundary value problem in electrical prospection J. Sylvester;G. Uhlmann
- Ann. of Math. v.125 A global uniqueness therorem for an inverse boundary value problem G. David;J-L Journe
- Comm. Pure Appl. Math. v.41 Inverse Boundary Value Problems at the boundary-Continuous Dependence J. Sylvester;G. Uhlmann
- Inverse Problems in Partial Differential Equatations The Dirichlet to Neumann map and applications J. Sylvester;G. Uhlmann
- Lecture Note G. Uhlmann
- J. fo Functional Analysis v.59 Layer potentials and boundary value problems for Laplace's equaration in Lipschitz domains G. C. Verchota
- IEEE Trans. Med. Imag. v.16 no.5 Measurement of ac magnetic field distribution using magnetic resonance imaging Y. Z. Ider;L. T. Muftuler
- Impedance tomography using internal current density distribution measured by nuclear magnetic resonance E. J. Woo;S. Y. Lee;C. W. Mun
- Generalized Analytic Fuctions I. N. Vekua