역전도체 문제와 전기 임피던스 영상기법

  • 강현배 (서울대학교 자연과학대학 수리과학부) ;
  • 서진근 (연세대학교 이과대학 수학과)
  • Published : 2001.07.01

Abstract

칼데론 문제와 유한번 측정 역전도체 문제에 대한 중요한 결과들을 설명하고, 그 응용으로서 전기임피던스 영상기법에 대하여 설명한다.

Keywords

References

  1. Applicable Analysis v.27 Stable Determination of Conductivity by Boundary Measurements G. Alessndrini
  2. Boll. Union. Mat. Ita. v.3A no.7 Remark on a paper of Bellout and Friedman G. Alessndrini
  3. J. Diff. Equatations v.84 Singular Solutions of Elliptic Equation and the Determination of Conductivity by Boundary Measurements G. Alessndrini
  4. Trans. of Amer. Math. Soc. v.347 Local Uniqueness in the inverse problem with one measurement G. Alessndrini;V. Isakov;J. Powell
  5. SIAM J. of Appl. Math Soc. v.58 no.4 The inverse conductivity problem with one measurement;bounds on the size of the unknown object G. Alessndrini;E. Rosset
  6. Proc. Amer. Math. Soc. v.128 Optimal size estimates for the inverse conductivity problem with one measurement G. Alessndrini;E. Rosset;J. K. Seo
  7. Proceedings of Symposia in Pure Math. AMS v.43 Multidimensional inverse scatterings and nonlinear partial differential equatations, in Psedofferential operators and Applications R. Beals;R. R. Coifman
  8. Proc. Amer. Math. Soc. v.122 The inverse conductivity problem with one measurement;uniqueness for convex polyhedra B. Barcelo;E. Fabes;J. K. Seo
  9. Archive Rat. Mech. Anal. v.101 Identification problem in potential theory H. Bellout;A. Friedman
  10. Trans. Amer. Math. Soc. v.332 Inverse problem in potential theory H. Bellout;A. Friedman;V. Isakov
  11. Comm. in PDE v.22 Uniquenes in the inverse conductivity problem for nonsmoth conductivity in two dimensions R. M. Brown;G. Uhlmann
  12. Seminar on Numerical Analysis and its Applications to Continuum Physics On an inverse boundary value problem A. Calderon
  13. SIAM J. Sci. Comout v.20 A nonlinear primal-dual method for total variation-based image restoration T. Chan;G. Golub;P. Mulet
  14. Ann. of Math. v.116 L'intetegrale de Cauchy definit un operateur bournee sur L² pour courbes lipschitziennes R. R. Coifman;A. Mclntosh;Y. Meyer
  15. Inverse Problems v.14 Identification of conductivity imperfections of small diameter by boundary measurements;Continuous dependence and computational reconstruction D. J. Cedio-Fengya;S. Moskow;M. Vogelius
  16. Ann. of Math. v.120 A boundedness criterion for generalized Calderon-Zygmund operators G. David;J-L Journe
  17. Proceedings of A. M. S. v.115 On a regularity theorem for Weak Solutions to Transmission Problems with Internal Lipschitz boundaries L. Escauriaza;E. B. Fabes;G. Verchota
  18. Acta Math. v.141 Potentiasl Techniques for boundary value problems on C¹domains E. B. Fabes;M. Jodeit;N. M. Riviere
  19. SIAM J. of Applied Math. v.59 no.5 Inverse conductivity problem;error estimates and approximate identifiction for perturbed disks E. Fabes;H. Kang;J. K. Seo
  20. Indiana Univ. Math. J. v.38 On the uniqueness in the inverse conductivity problem with one measurement A. Friedman;V. Isakov
  21. Arch. Rat. Mech. Anal. v.105 Identification of small inhomegeneities of extreme conductivity by boundary measurements A. Friedman;M. Vogelius
  22. Introduction to partial differential equatations G. B. Follad
  23. Inverse Problems v.6 On the inverse conductivity problem with one measurement V. Isakov;J. Powell
  24. Med. Biol. Eng. Comp. v.36 Measurement of electrical current distribution within the tissues of the head by magnetic resonance imaging H. R. Gamba;D. T.; Delpy
  25. A uniqueness theorem for an inverse boundary value problem in two dimensions H. Gang
  26. Inverse Problems v.17 Recovery of an inhomogeneity in an elliptic equation H. Kang;K. Kwon;K. Yun
  27. Inverse Problems v.12 Layer potential technique for the inverse conductivity problem H. Kang;J. K. Seo
  28. J. Korean Math. Soc. v.12 On stability of transmission problem H. Kang;J. K. Seo
  29. SIAM J. of Applied Math v.59 no.5 Inverse conductivity problem with one measurement;uniqueness for balls in R³ H. Kang;J. K. Seo
  30. Inverse Problems v.15 Identification of domains with near-extreme conductivity;glabal stability and error estimates H. Kang;J. K. Seo
  31. Jour. Korean Math. Soc. uniqueness and non-uniqueness in the inverse conductivity problem with one measurement H. Kang;J. K. Seo
  32. Inverse Problems and related fields v.15 Recent Progress in the inverse conductivity problem with single measurement H. Kang;J. K. Seo
  33. Inverse Problems v.13 Numerical identification of discontinuous conductivity coefficients H. Kang;J. K. Seo;D. Sheen
  34. SIAM J. of Math Anal. v.13 Inverse conductivity problem with one measurement;Stability and estimations of size H. Kang;J. K. Seo;D. Sheen
  35. E. Kim
  36. On a nonlinear partial differential equation arising in MREIT S. W. Kim;O. Kwon;J. K. Seo;J. Yoon
  37. Comm. Pure Appl. Math. v.37 Determining by conductivity by boundary measurements Kohn R;Vogelius M
  38. Simulation Study of J-Substitution Algorithm O. Kwon;E. Woo;J. Yoon;J. K. Seo;Magnetic Resonance Electrical Impedence Tomography(MREIT)
  39. Inverse Problems Total size estimation and idenfication of multiple anolaies in the inverse electrical impedance tomography O. Kwon;J. K. Seo
  40. A real time algorithm for the location search of discontinuous concuctivites with one measurement O. Kwon;;J. K. Seo;J. Yoon
  41. Comm. Pure Appl. Math. v.42 Determining anistropic real-analytic conductivities by boundary measurements J. Lee;G. Uhlmann
  42. Illinois Jour. of Math. Symmetry of a Boundary Integral Operator and a Characterization of a Ball M. Lim
  43. Forum Math v.12 Electrostatic characterization of spheres O. Mendez;W. Reichel
  44. Ann. Math. v.128 Reconstructions from boundary measurements A. Nachman
  45. Ann. Math. v.143 Global uniqueness for a two-dimensional inverse boundary value problem A. Nachman
  46. Arch. Rational Mech. Anal. v.137 Radical symmetry for ellitptic boundary-value problems on exterior domains W. Reichel
  47. IEEE Trans. Med. Imag. v.10 no.3 Measurement of nonuniform current density by magnetic resonance G. C. Scott;M. L. G. Joy;R. L. Armstrong;R. M. Henkelman
  48. J. Mag. Res. v.97 Sensitivity of magnetic-resonance current density imaging G. C. Scott;M. L. G. Joy;R. L. Armstrong;R. M. Henkelman
  49. IEEE Trans. Med. Imag. v.14 Electromagnetic considesration for RF current density imaging G. C. Scott;M. L. G. Joy;R. L. Armstrong;R. M. Henkelman
  50. J. Four. Anal. Appl. v.2 no.3 A uniqueness result on inverse conductivity problem with two measurements J. K. Seo
  51. Proc. Amer. Math. Soc. v.115 no.4 A Characterization of the sphere in terms of single-layer potentials H. Shahgholian
  52. Comm. Pure Appl. Math. An anistropic inverse boundary value problem J. Sylvester
  53. Comm. Pure Appl. Math. v.39 A uniqueness theorem for an inverse boundary value problem in electrical prospection J. Sylvester;G. Uhlmann
  54. Ann. of Math. v.125 A global uniqueness therorem for an inverse boundary value problem G. David;J-L Journe
  55. Comm. Pure Appl. Math. v.41 Inverse Boundary Value Problems at the boundary-Continuous Dependence J. Sylvester;G. Uhlmann
  56. Inverse Problems in Partial Differential Equatations The Dirichlet to Neumann map and applications J. Sylvester;G. Uhlmann
  57. Lecture Note G. Uhlmann
  58. J. fo Functional Analysis v.59 Layer potentials and boundary value problems for Laplace's equaration in Lipschitz domains G. C. Verchota
  59. IEEE Trans. Med. Imag. v.16 no.5 Measurement of ac magnetic field distribution using magnetic resonance imaging Y. Z. Ider;L. T. Muftuler
  60. Impedance tomography using internal current density distribution measured by nuclear magnetic resonance E. J. Woo;S. Y. Lee;C. W. Mun
  61. Generalized Analytic Fuctions I. N. Vekua