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THE ENERGY INEQUALITY OF A
QUASILINEAR HYPERBOLIC MIXED PROBLEM

SEONG JOO KANG

ABSTRACT. In this paper, we establish the energy inequalities for
second order quasilinear hyperbolic mixed problems in the domain
RE.

1. Introduction

Let u be a smooth enough solution to a quasilinear hyperbolic mixed
problem:

Py(t,x,u, Du, DYu = f(t, z,u, Du) in €,
(1) u(t: :B’: 0) = Q(t, wl) on J9Q,

u(0,2) = wp, w(0,z) = us,

where @ = R™™ = {(t,2/,z,)|(t,z") € R*,z, > 0} and Q2 = QN
{{(t,z', )|z, = 0} is the boundary of {2, and
n

(2) Pz(t, x,u, DU-, D) = (5? h Z Qgj (t: T, U, Du)az{ azj )

(1. 5)#0.0)

87 =0
is strictly hyperbolic with respect to {t = constant}, f and g are smooth
functions of its arguments and (az.j) is symmetric. In this paper, we
consider appropriate energy inequalities for equation (1). This result will
be effectively used in the proof of the regularity of conormal solutions
to quasilinear hyperbolic mixed problems.
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2. Preliminaries

Before we prove the energy inequalities we need the following remark
and lemmas.

We note that strictly hyperbolicity of P»(t, z,u, Du, D) implies the
following inequality :

n
2 2
(3) EP < CE + ) a,(t,z,u, Du)gL),
ig=1
where C' is a positive constant and £ = (§,,£,,--- ,£,) € R*"L
Throughout this thesis, we use
n n
Z instead of Z for notational convenience.
(4,5}#(0.0) GNA00)
4,5=0

For the proof of Schauder’s lemma, see Rauch [9], and for the Gagliardo-
Nirenberg inequalities, see Nirenberg [8].

LEMMA 2.1. (Schauder’s lemma) If u,v € H*(R") and s > %, then
wv € H*(R™) and ||uv{|Hs < Cllufl s ”’U”Hs.

LEMMA 2.2. (Gagliardo-Nirenberg inequalities) Let » € LY(R®) and
its derivative of order m, D™u, belong to L"(R"), 1 < ¢,7 < co. For
the derivatives D7u, 0 < j < m, the following inequalities hold

(4) 1D7ullp < constant|| D™l uly ™,

where 1/p = j/n+ a(l/r —m/n) + (1 —a)1/q, for all a in the interval
J/m £ a £1 ( the constant depending only on n,m, j,q,r and a), with
the following exceptional cases:

1. If j =0, rm < n, ¢ = cc, then we make the additional
assumption that either u tends to 0 at infinity or u € Li(R™) for some
finite ¢ > 0.

2. If 1 <7 < oo, andm — j—n/r is a nonnegative integer,
then (4) holds only for a satisfying j/m < a < 1.

Throughout this paper we treat the case in which the regularity in-
dices s and s’ are integers; analogous results hold in the general case.
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LEMMA 2.3. Let 0 < s < s and suppose that w € L®(R") N
H*(R™).
Then for || = ¢, it follows that D%w € L*(R*) and

[0l L, < Clwl ) "7 (lll o) 7,

where p = s/s' and C is a constant depending only on s, s’ and n.

COROLLARY 2.4. Suppose that w € L
If f € C*°(R), then f(w) € Hf .(R").

(R™) N HE

loc

(R®) for s > 0.

loc

3. Energy inequality

Since the equation (1) satisfies the uniform Lopatinski condition, the
equation is well-posed. See Chazarain-Piriou (5], or Sakamoto [10] for
the definition of the uniform Lopatinski condition and the existence of
solutions of the equation (1). Now we state and prove the main theorem
for equation (1).

THEOREM 1. (Energy Inequality) Let Ps(t, z,u, Du, D) be a partial
differential operator of order 2 on 2, as in (2), strictly hyperbolic with
respect to the planes {t = constant} and let u(t,z) € C(R; H{ ()N
CHR; Hi 1Y), s > 2 + 2, satisfy the equation

Py(t,z,u, Du, D)yu = f(t,z,u, Du) in Q,

5) u(t,z',0) = g(¢,z') on 99,

where f is smooth function of its arguments. If u(0,z) € H} () and-
u(0,z) € HSZ'(Q) and the boundary 8Q of Q is not characterjstlc hy-
persurface of Py, then, for all t, u(t,z) € H} (). Moreover, if u has
compact support in x for each time t, then we have

©)  ult, )l < Ce (00, 2) gy + 10, 2) s )

for all t, where C; = C(t) is independent of u and f.
ProoF. By finite propagation speed and an analysis local in time,

it may be assumed that » has compact support in z for each ¢. Let
|a| = s —~ 1. We apply D* = 6311 -+~ 8" to equation (1) obtaining an
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equation, by the Leibniz formula,

(1) B(Dw) =D+ Y 0,(D°Pa,)(DPu,, ) =h,

i
A< (1.4)2(0.0)

where Cﬂ are constants depending only on multiindices 3. The use of
the Leibniz formula is justified below, using Lemma 2.3. Let w(t,x) =

D%u(t,z}. Then (7) can be written as
n

(8) Pyw = w,, — Z a; (Du)wzimj =h.
(i.0)#(0.0)

Let E(t) be energy for equation (8) defined by

n

(9) E*t) = [ (wi(t,z) + wi(t, z) + Z aij(Du)wI‘ (t, 2w, (t,z))dz.
0 ¥ F

i,7=1

By differentiating (9) with respect to ¢ and integrating by parts, we have

¢ R [ Oa,
2E(t )d'ii ) = /Q(wa + 2w, w,, + Z (a—;)wx‘ W,

ij=1
+2Z(LU .t z
i,j=1
= 2fwtw+wtt Z a'wmz)dm
° (A0
+4f2aw wdm-—QZf( )'w w,dz

IJ_

+Zf( )wwd&:—Zfawwdcc

i,j=1
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We note that
7 n—1
4/Za0jwm._wtda: = 4/Zaojwm_wtda:%-éi/aOnwtmnwtd:ﬂ
4 i 250 i #)
" osda,.
0
= —4/2(—3)wtwtdm
51 Oz,
n
—4/Za0jwtr‘wtd:c
255 i

—4f w,w,dr
t
o Dn t

It follows from (8) that

E()dii) = / w+h)d;c—zf(

1,7=1

13 35 (G

le

)w wdw

10 —/ a, W wd:c'wf a_.w,w,dz.
() BQZn_ymjt BQnOtt

By letting £ = Vuw = (w - ,w, ) in (3), we have

w
£y "

w?—!—wil—f— +w2 <th+z Duw'wv,)
i,j=1

and so, by (9),

Tt
f Zwi_dw < C E2(1).
Rizr 7
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Now we estimate the third term in (10). Holder's and Schwarz’s

inequality imply that
E)a Du)
Wy, We
< Yy (

8a Du)
Z/ W, W, d:c <
Du)
/|w w, \dz
ij=1

g4 ()

3,7=1
(11) < CH)E(),

since D?u(t,x) € H2(Q) C L=(R), for all ¢, and s — 2 > %. Similarly,
for the second and fourth terms, we have
J

S e < 3

ldz

i,7=1

_ 3aij(Du)
Bscj

IA

| de

IA
Q
=
ME
Pl
S
g2
RS
£,
8
S
B
P
S
£,
]
N’
L~

(12) < C)ED),
and
n da .(Du)) n Ba. . (Du}l|-
0j 07 2
Z/ wtwtd:c < Z /wtdw
=1 Q( 0z, =1 Oz, () Q
(13) < CYE2(b).

For the fifth and sixth terms, by Schwarz’s inequality and trace the-
orem, we have

n Tt
' !
< oM ( / wi.dm') ( / wtzdx')
=1 o 7 an
(14) < CWEXY),
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and

A

2
/an a,,(Puyw,w,dz’ {|a,0(Du JI|L°° o /an widz'
(15) < C(t)EXe),

since Du(t,z) € H*~1{OQ) C L®(6Q), for all t, and 5 — 2 > 5.
For the first term, Schwarz’s inequality yields that

/th('w—l-h)dm = /g;wtwdm—l-js;(wth)dm
(16) < CEXt) + f |w, h|dz.
Q

It remains to estimate [, lw, hldz.

We will show that for 1 <1 < s—1, (Dla (Du)) (D517} € L2(9).
By the chain rule and the Leibniz formula Dia, (Du) may be writ-
ten as a sum of terms of the form b, (Du) (D"‘l (Du)) - (D%= (D))
with b, smooth and || + -+ + |a, | = I, where |a,j > 1 for k =
1,---,m. Let D*u(t,z) = v(t,z). Then v € L®(Q}) N H*2(f) since
s§—2>n/2, and DlaU (Du} is written as a sum of terms of the form
b, (Du)(DAv) - - - (DPnv) with 181+ -+18y| < 1-1, where |3, | > 0 for

2(s—2
k=1,---,m. As we know b, (Du) € L®(Q) and D%v e L 1%l (Q) by
Lemma 2.3. Thus Hélder’s inequality implies that the use of the chain
rule was justified, and since (|5, |+ +13,,[)/2(s—2) < (I—1)/2(s-2),

2As—2)

Du)(Dﬁl v)--(DPny) € LTI-T (RP). Since DsH1-ly — ps-1-ty,

2(s—2)
Dstl=by e L5-1-1(Q) by Lemma 2.3. Therefore, by Hélder’s inequality

and Lemma 2.3, (D'a,;(Du))(D*"~'u} € L*(02) and

[(D'ay; (D) (D )| , < || Dlay; (Du)]| ,ID* |,

S C t)”v”Lm ||UHH’3—2
since 1/p+1/g=1/2, where p=2(s —2)/{l— 1) and ¢ = 2(s — 2) /(s —
1 —1). D*(f(Du)) may be written as a sum of terms of the form
fo(Du) (D*(Du)) - -- (D% (Du))

with f, smooth, & +---+a,, = a and f, (Du) (D*1 (Du)) - - - (D% (Du))
L*(Q) . Moreover, by Lemma 2.3, | D*(f(Du))]| 2 < C)|Dul
C)lull g -

g1 =
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By Schwarz’s inequality, Minkowski’s inequality and the facts above,

fn(wth)d:n = /ﬂwt(Daf-l-Z Z Cﬂ(D“‘Baij)(DBuzin))d:c

B<a (1.5)#(00)

< (wadw)z {(/Q(D“f)zdm)z+
> C, ( f (D“_ﬁaij)z(Dﬁumixs)zd:c) i
B<a .00 @ ’
< cB® (10715 + oll vl oce )
< COE®) (Jull,) < CEE),
and so
(17) / w, (w + h)dz < C(t)E*(t).
Q
From (11) - (15), (17) and by dividing (10) by E(t), we have
(18) B < ey
By applying Gronwall’s inequality to (18),
(19) B(t) < C)E®©), where C() =™
Thus, for given ¢,
flult, 2)ll s < C(t) (Ilu(O,w)il ge T+ (0, 2}l H,,_l) : O
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